- •1. Степени окисления элементов, их связь с положением элементов в Периодической системе. Классы неорганических соединений, номенклатура неорганических соединений.
- •2. Планетарная модель атома водорода Резерфорда; постулаты Бора.
- •3. Уравнение Де-Бройля, корпускулярно-волновые свойства микрообъектов (дуализм), принцип неопределенности Гейзенберга
- •4. Квантовые характеристики состояний электрона в атоме водорода (квантовые числа).
- •5. Электронное строение многоэлектронных атомов. Порядок заполнения орбиталей многоэлектронных атомов: принцип Паули, правило Хунда; s-, p-, d-элементы. Полные и неполные электронные аналоги.
- •6. Форма и пространственное расположение s-, p- и d- орбиталей в атоме.
- •7. Радиусы атомов, их изменение в периодах и группах Периодической системы. Зависимость кислотно-основных свойств соединения от радиуса центрального атома.
- •8.Энергия ионизации; сродство к электрону. Изменение в периодах и группах Периодической системы.
- •9. Электроотрицательность атомов элементов. Относительная электроотрицательность. Изменение в периодах и группах Периодической системы. Полярность химической связи,полярность молекул и ионов.
- •11. Ковалентная химическая связь. Особенности ковалентной связи: направленность и насыщаемость (приведите примеры).
- •12. Понятие о гибридизации атомных орбиталей и его применение для описания конфигурации молекул и ионов. Приведите примеры соединений.
- •2 Вариант:
- •13. Теория отталкивания σ-связывающих и неподелённых электронных пар и её применение для описания геометрической конфигурации молекул и ионов.
- •14. Структура Периодической системы элементов: периоды, группы, подгруппы, вставные декады. Взаимосвязь между электронной структурой атомов элементов и их положением в Периодической системе.
- •Стандартная энергия Гиббса образования δGо298 некоторых веществ
- •22. Динамический характер химического равновесия. Расчет констант химического равновесия, исходные и равновесные концентрации
- •23. Смещение химического равновесия при изменении концентраций реагентов, давления, температуры. Принцип Ле-Шателье.
- •24. Растворы как гомогенные системы. Гидраты, сольваты. Ненасыщенные, насыщенные и пересыщенные растворы
- •25. Электролитическая диссоциация веществ в растворах. Кислоты, основания, амфотерные гидроксиды, соли. Сильные и слабые электролиты.
- •26. Роль молекул растворителя в процессах электролитической диссоциации. Аквакомплексы металлов, их кислотные свойства.
- •27. Электролитическая диссоциация сильных и слабых электролитов в водных растворах. Вычисление концентраций ионов.
- •28. Электролитическая диссоциация воды. Ионное произведение воды. Водородный показатель.
- •29. Основные положения теорий кислот и оснований Аррениуса и Бренстеда-Лоури. Зависимость кислотно-основных свойств соединений от степени окисления центрального иона.
- •30. Амфотерность гидроксидов с точки зрения теории электролитической диссоциации (приведите примеры).
- •31. Равновесия в насыщенных растворах малорастворимых солей. Расчёт растворимости малорастворимой соли. Способы увеличения растворимости малорастворимых солей.
- •32. Гидролиз солей, образованных: а) сильным основанием и слабой кислотой; б) слабым основанием и сильной кислотой. Качественная оценка рН растворов гидролизующихся солей.
- •35. Стандартный ( нормальный) окислительно-восстановительный потенциал, определение напрвления о.-в. Реакции
- •36.Реакции самоокисления - самовосстановления (диспропорционирования). Внутримолекулярные окислительно – восстановительные процессы.
- •37. Уравнение Нерста. Влияние кислотности раствора на величину окислительно - восстановительного потенциала. Выбор среды для проведения окислительно-восстановительного процесса.
- •38. Координационные соединения. Центральный атом и лиганды, внутренняя и внешняя сферы комплексных соединений, координационное число.
- •39. Строение координационных соединений , гибридизация орбиталей центрального атома.
- •40. Изомерия комплексных соединений.
- •41. Равновесия в растворах комплексных соединений.
35. Стандартный ( нормальный) окислительно-восстановительный потенциал, определение напрвления о.-в. Реакции
Окисл.-восст. Реакции – реакции, протекающие с изменением степеней окисления атомов, входящих в состав реагирующих веществ, путем перераспределения электронов между окислителем и восстановителем.
Типичные окисл: KClO3, H2SO4, HNO3 и т.д.
Типичные восст: H2, Zn, HCl и т.д.
36.Реакции самоокисления - самовосстановления (диспропорционирования). Внутримолекулярные окислительно – восстановительные процессы.
Стандартный окислительно-восстановительный потенциал — мера способности химического вещества присоединять электроны (восстанавливаться). Окислительно-восстановительный потенциал выражают в милливольтах (мВ).
Направления окислительно-восстановительной реакции определяется константой равновесия.
Lg k = ((E10 –E20)n) / 0.059;
Где E10 ;E20 - Стандартные окислительно-восстановительные потенциалы.
n – чисто электронов
37. Уравнение Нерста. Влияние кислотности раствора на величину окислительно - восстановительного потенциала. Выбор среды для проведения окислительно-восстановительного процесса.
Диспропорционрование - это когда одно и то же вещество является оновременно и окислительем и восстановительем. Такие реакции бывают когда элемент находиться в промежуточной степени окислени
Во внутримолекулярных реакциях окислитель и восстановитель находятся в одной и той же молекуле. Внутримолекулярные реакции протекают, как правило, при термическом разложении веществ, содержащих окислитель и восстановитель.
2KCl+5O3-2 -> 2KCl-1 + 3O20
Cl+5 - окислитель; О-2 - восстановитель
N-3H4N+5O3 –t°-> N2+1O + 2H2O
N+5 - окислитель; N-3 - восстановитель
2Pb(N+5O3-2)2 -> 2PbO + 4N+4O2 + O20
N+5 - окислитель; O-2 - восстановитель
38. Координационные соединения. Центральный атом и лиганды, внутренняя и внешняя сферы комплексных соединений, координационное число.
КООРДИНАЦИОННЫЕ СОЕДИНЕНИЯ (комплексные соед.), содержат катионный, анионный или нейтральный комплекс, состоящий из центр. атома (или иона) и связанных с ним молекул или ионов - лигандов.
Лига́нд (от лат. ligare — связывать) — атом, ион или молекула, связанные с неким центром (акцептором). Понятие применяется в химии комплексных соединений, обозначая там присоединенные к одному или нескольким центральным (комплексообразующим) атомам металла частицы. При присоединении лигандов к центральному атому химические свойства комплексообразователя и самих лигандов часто претерпевают значительные изменения.
Внутренняя сфера комплексного соединения – центральный атом со связанными с ним лигандами, то есть, собственно, комплексная частица.
Внешняя сфера комплексного соединения – остальные частицы, связанные с комплексной частицей ионной или межмолекулярными связями, включая водородные.
Координационное число (КЧ) – число - связей, образуемых центральным атомом с лигандами. Для комплексных соединений с монодентантными лигандами КЧ равно числу лигандов, а в случае полидентантных лигандов - числу таких лигандов, умноженному на дентатность.
