
- •1. Степени окисления элементов, их связь с положением элементов в Периодической системе. Классы неорганических соединений, номенклатура неорганических соединений.
- •2. Планетарная модель атома водорода Резерфорда; постулаты Бора.
- •3. Уравнение Де-Бройля, корпускулярно-волновые свойства микрообъектов (дуализм), принцип неопределенности Гейзенберга
- •4. Квантовые характеристики состояний электрона в атоме водорода (квантовые числа).
- •5. Электронное строение многоэлектронных атомов. Порядок заполнения орбиталей многоэлектронных атомов: принцип Паули, правило Хунда; s-, p-, d-элементы. Полные и неполные электронные аналоги.
- •6. Форма и пространственное расположение s-, p- и d- орбиталей в атоме.
- •7. Радиусы атомов, их изменение в периодах и группах Периодической системы. Зависимость кислотно-основных свойств соединения от радиуса центрального атома.
- •8.Энергия ионизации; сродство к электрону. Изменение в периодах и группах Периодической системы.
- •9. Электроотрицательность атомов элементов. Относительная электроотрицательность. Изменение в периодах и группах Периодической системы. Полярность химической связи,полярность молекул и ионов.
- •11. Ковалентная химическая связь. Особенности ковалентной связи: направленность и насыщаемость (приведите примеры).
- •12. Понятие о гибридизации атомных орбиталей и его применение для описания конфигурации молекул и ионов. Приведите примеры соединений.
- •2 Вариант:
- •13. Теория отталкивания σ-связывающих и неподелённых электронных пар и её применение для описания геометрической конфигурации молекул и ионов.
- •14. Структура Периодической системы элементов: периоды, группы, подгруппы, вставные декады. Взаимосвязь между электронной структурой атомов элементов и их положением в Периодической системе.
- •Стандартная энергия Гиббса образования δGо298 некоторых веществ
- •22. Динамический характер химического равновесия. Расчет констант химического равновесия, исходные и равновесные концентрации
- •23. Смещение химического равновесия при изменении концентраций реагентов, давления, температуры. Принцип Ле-Шателье.
- •24. Растворы как гомогенные системы. Гидраты, сольваты. Ненасыщенные, насыщенные и пересыщенные растворы
- •25. Электролитическая диссоциация веществ в растворах. Кислоты, основания, амфотерные гидроксиды, соли. Сильные и слабые электролиты.
- •26. Роль молекул растворителя в процессах электролитической диссоциации. Аквакомплексы металлов, их кислотные свойства.
- •27. Электролитическая диссоциация сильных и слабых электролитов в водных растворах. Вычисление концентраций ионов.
- •28. Электролитическая диссоциация воды. Ионное произведение воды. Водородный показатель.
- •29. Основные положения теорий кислот и оснований Аррениуса и Бренстеда-Лоури. Зависимость кислотно-основных свойств соединений от степени окисления центрального иона.
- •30. Амфотерность гидроксидов с точки зрения теории электролитической диссоциации (приведите примеры).
- •31. Равновесия в насыщенных растворах малорастворимых солей. Расчёт растворимости малорастворимой соли. Способы увеличения растворимости малорастворимых солей.
- •32. Гидролиз солей, образованных: а) сильным основанием и слабой кислотой; б) слабым основанием и сильной кислотой. Качественная оценка рН растворов гидролизующихся солей.
- •35. Стандартный ( нормальный) окислительно-восстановительный потенциал, определение напрвления о.-в. Реакции
- •36.Реакции самоокисления - самовосстановления (диспропорционирования). Внутримолекулярные окислительно – восстановительные процессы.
- •37. Уравнение Нерста. Влияние кислотности раствора на величину окислительно - восстановительного потенциала. Выбор среды для проведения окислительно-восстановительного процесса.
- •38. Координационные соединения. Центральный атом и лиганды, внутренняя и внешняя сферы комплексных соединений, координационное число.
- •39. Строение координационных соединений , гибридизация орбиталей центрального атома.
- •40. Изомерия комплексных соединений.
- •41. Равновесия в растворах комплексных соединений.
2 Вариант:
Процесс смешивания разных (s,p,d) орбиталей центрального атома многоатомной молекулы с возникновением того же числа орбиталей, эквивалентных по своим характеристикам
(Те же самые рисунки)
Пример: BCl3 – гибрид. sp2
13. Теория отталкивания σ-связывающих и неподелённых электронных пар и её применение для описания геометрической конфигурации молекул и ионов.
Молекула всегда будет принимать форму, при которой отталкивании внешних электронных пар минимально.
Этой теорией объясняется и предсказывается геометрия молекул.
14. Структура Периодической системы элементов: периоды, группы, подгруппы, вставные декады. Взаимосвязь между электронной структурой атомов элементов и их положением в Периодической системе.
Периодическая система имеет 7 периодов, 8 групп, каждая из которых условно подразделяется на главную и побочную подгруппу. Номер группы определяет число валентных электронов в атомах элементов.
S – элементы – 1 и 2 группы главной подгруппы
p- элементы - 3 – 8 группы главной подгруппы
d-элементы – побочные подгруппы
15. Валентные возможности атомов элементов в химических соединениях. Валентные возможности атомов – это допустимые валентности элемента, весь спектр их значений в различных соединениях.
16. Газообразное и конденсированное состояния. Валентные и невалентные (ван-дер-ваальсовы) силы сцепления. Водородная связь.
КОНДЕНСИРОВАННОЕ СОСТОЯНИЕ вещества - жидкое и твердое агрегатные состояния вещества. Переход вещества из газообразного в конденсированное состояние называется конденсацией. Ван-дер-ваальсовы силы — силы межмолекулярного взаимодействия с энергией 0,8 — 8,16 кДж/моль. Этим термином первоначально обозначались все такие силы, но сейчас он обычно применяется к силам, возникающим при поляризации молекул и образовании диполей. Водородная связь — разновидность донорно-акцепторной связи, невалентное взаимодействие между атомом водорода H,ковалентно связанным с атомом A группы A-H молекулы RA-H и электроотрицательным атомом
17. Термохимические уравнения. Тепловой эффект и изменение стандартной энтальпии химической реакции.
Термохимические уравнения включают в себя кроме химических формул тепловой эффект реакции. Числовое значение в уравнении реакции строго соответствует количествам веществ, участников реакции, т.е. коэффициентам. Благодаря этому соответствию, можно установить пропорциональные отношения между количеством вещества или массой и количеством теплоты в этой реакции.
Например: Термохимическое уравнение разложения малахита
(CuOH)2 CO3 = 2CuO + H 2 O + CO 2 - 47 кДж
Тепловой эффект химической реакции или изменение энтальпии системы вследствие протекания химической реакции — отнесенное к изменению химической переменной количество теплоты, полученное системой, в которой прошла химическая реакция и продукты реакции приняли температуру реагентов.
18. Закон Гесса и следствия из него. Применение закона Гесса для расчёта изменения энтальпии химических реакций.
Закон Гесса — основной закон термохимии, который формулируется следующим образом:
Тепловой эффект химической реакции, проводимой в изобарно-изотермических или изохорно-изотермических условиях, зависит только от вида и состояния исходных веществ и продуктов реакции и не зависит от пути её протекания.
Таким образом, пользуясь табличными значениями теплот образования или сгорания веществ, можно рассчитать теплоту реакции, не прибегая к эксперименту. Табличные величины теплот образования и сгорания веществ обычно относятся к т. н. стандартным условиям. Для расчёта теплоты процесса, протекающего при иных условиях, необходимо использовать и другие законы термохимии, например, закон Кирхгофа, описывающий зависимость теплового эффекта реакции от температуры.
19. Влияние температуры на величину свободной энергии Гиббса и константу равновесия.