Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ref_po_mikrobiologii_Nastya.docx
Скачиваний:
47
Добавлен:
12.04.2015
Размер:
63.92 Кб
Скачать

1.2 Строение микроскопических грибов

Клеточная стенка. Представляет собой многослойную оболочку из 9...10 слоев различной электронной плотности. Система микрофибрилл, встроенных в аморфный матрикс, формирует скелет клетки. Фибриллы в зависимости от видовой принадлежности могут состоять из целлюлозы, глюкона и хитина. Другие полисахариды, белки, пигменты, липиды служат цементирующими веществами, образующими химические связи с микрофибриллярной частью клеточной стенки. Наличие таких комплексов обеспечивает избирательную проницаемость для одних веществ и блокаду других.

Опорные микрофибриллы клеточной стенки и ее матрикс отличаются по механизму образования и биосинтезу. Образование фибрилл и матрикса происходит несинхронно, в первую очередь регенерируется фибриллярный остов стенки. Биосинтез этих двух частей клеточной стенки осуществляется с участием ферментов.

Процесс образования клеточной стенки происходит двумя способами: новый материал может либо внедряться в стенку поляри- зованно, либо равномерно накладываться по всей ее поверхности. В первом случае происходит образование цилиндрических клеток, во втором — сферических.

Клеточная стенка служит защитным приспособлением и предохраняет грибную клетку от воздействия различных факторов окружающей среды, например осмотическим барьером, обусловливающим избирательную проницаемость для различных веществ. Она придает форму вегетативным клеткам гиф и органов размножения. На поверхности клеточной стенки и цитоплазматической мембраны локализованы ферменты, осуществляющие превращение не усвояемых клеткой (не растворимых в воде) полимеров.

В результате лизиса клеточная стенка грибов может разрушиться под воздействием ферментов, выделяемых другими клетками и образующихся в клетке самого гриба.

Основные компоненты клеточной стенки грибов — хитин, глюканы, белок и жиры. Азотистые и безазотистые полисахариды с жировыми веществами образуют растворимые и нерастворимые комплексы. Основу клеточной стенки составляют 4...6 моносахаров, соотношение которых у различных грибов незначительно варьирует. В состав полисахаридных фракций входят глюкозамин, манноза, глюкоза, ксилоза и др. Следует подчеркнуть, что состав клеточной оболочки различных клеток одного и того же гриба неодинаковый.

Протопласт — содержимое клетки, заключенное в клеточную стенку: Имеет цитоплазматическую мембрану, эндоплазмати- ческий ретикулум, одно или несколько ядер с ядрышками, а также митохондрии, рибосомы с РНК, лизосомы, аппарат Гольджи, вакуоли, пластинчатый комплекс, секреторные гранулы, а также другие структуры и различные включения.

Цитоплазматическая мембрана. Тонкая трехслойная оболочка, располагается непосредственно под клеточной стенкой и отделяет ее от цитоплазмы. Цитоплазматическая мембрана обладает избирательной проницаемостью для веществ, входящих в клетку и выходящих из нее. Цитоплазматическая мембрана содержит до 40 % липидов и до 38 % белков. Различной формы инвагинации и ущемления цитоплазматической мембраны называются мезосомами.

Основное функциональное назначение цитоплазматической мембраны заключается в следующем: осуществление поступления в клетку различных веществ, ферментативная переработка и выделение продуктов метаболизма. Переработанные в цитоплазматической мембране вещества поступают в протопласт клетки и участвуют в обмене веществ.

Эндоплазматический ретикулум. Состоит из пузырьков, канальцев и вакуолей, служащих своеобразным депо питательных веществ.

Митохондрии. Многочисленные подвижные замкнутые образования эллипсовидной формы, с перегородками, покрытые одно- или двухслойной оболочкой. Предполагают, что митохондрии, благодаря собственной ДНК кольцевой структуры, способны к репродукции. Митохондрии окружены мембраной, на которой происходит локализация ферментов: пируватоксидазы, сукциндегидрогеназы, щелочной и кислой фосфатаз, пероксидазы и др. Митохондрии служат генераторами энергии в клетке. В зависимости от условий культивирования и физиологического состояния клетки форма митохондрий и их количество в клетке варьируют.

Рибосомы. Округлые зерна рибонуклеопротеидной природы размером до 200\ принимают участие в синтезе клеточных белков. Количество рибосом значительно отличается у различных видов грибов и зависит от внешних факторов, возраста культуры и др.

Аппарат Гольджи. Представлен группой пузырьков очень мелкого диаметра (0,000 002...О,ООО 01 мкм) или параллельно лежащими дисковидными пластинками. Этот органоид располагается в клетке на участке, свободном от рибосом.

Лизосомы. Производные аппарата Гольджи, размешаются между клеточной оболочкой и цитоплазматической мембраной. Представляют собой зернистые образования, окруженные однослойной липопротеидной мембраной. Содержат фермент, гидролизирующий белок, и выполняют функцию зашиты клеток от неблагоприятного воздействия токсичных веществ экзо- и эндогенного происхождения.

Липосомы. Капельки жировых веществ, окруженные однослойными мембранами.

Ядро. Находится в центре или на полюсах клетки. В грибных клетках могут быть одиночные и множественные ядра. Они отвечают за наследственные функции. Форма ядер округлая или удлиненная. Каждое ядро окружено двухслойной пористой нуклеомембраной с ядрышком из плотных зерен и тонких фибрилл. Ядрышки содержат в составе хромосом ДНК. Через анастомозы ядра могут мигрировать из одной клетки в другую.

Включения. В грибных клетках многочисленные включения: волютин, гликоген, липиды, пигменты, миелоидные образования, соли органических кислот, аминокислоты и др. Считается, что гликоген ответствен за эндогенное дыхание, а волютин служит запасным питательным веществом, участвующим в энергетических процессах.

Следует отметить, что в процессе жизнедеятельности в клетках грибов накапливаются различные продукты метаболизма — антибиотики, ферменты, токсины, витамины и др.

Все многочисленные морфологические элементы микроскопических грибов подразделяют на две группы: мицелий и споры. Они бывают различной формы и размеров. Морфологическое различие спор и мицелия служит важным дифференциальным признаком при определении вида гриба.

Мицелий. Представляет собой узкую круглую трубку, диаметр которой варьирует у микромицетов от одного до нескольких микрон.

Ветвящиеся трубочки — гифы, составляющие мицелий, дифференцируют на более толстые слабо разветвленные и тонкие сильно ветвящиеся. Первые формируют мицелий, главным образом разевающийся на субстрате, вторые — в толще субстрата для поглощения из него питательных веществ. Такая дифференцировка особенно характерна для мицелия некоторых паразитных грибов, но встречается нередко и среди сапрофитных форм. Например, у Rhizopus и некоторых других имеются особые столоны, неветвящиеся и обладающие энергичным ростом.

При обильном ветвлении гифы мицелия, соприкасаясь друг с другом, могут образовывать слияния между клетками, — анастомозы. При наличии большого их количества мицелий приобретает характерный сетчатый вид. Развитие анастомозов наблюдается у различных грибов с многоклеточным мицелием. Благодаря им возможно перемещение клеточного ядра из одной клетки в другую и переход от гаплоидного к диплоидному мицелию. Однако в большинстве случаев они осуществляют вегетативные функции и развиваются у многих форм при недостатке питания. Длина клеток мицелия колеблется от нескольких микрон до десятков и реже сотен микрон.

Мицелий окружен двухконтурной оболочкой, которая у молодых культур более нежная. В перегородках, делящих мицелий на отдельные клетки, имеются поры, через которые в процессе роста переливается цитоплазма, а с ней и питательные вещества. В клетках много различных включений: в старых цитоплазма становится зернистой из-за множества вакуолей. Молодой мицелий состоит из удлиненных прямоугольных клеток, старый — из коротких округлых или многогранных. Мицелий, имеющий перегородки, называется септированным. Однако у некоторых низших грибов мицелий состоит из гиф, лишенных поперечных перегородок, и представляет собой как бы одну, сильно разветвленную гигантскую клетку с многочисленными ядрами и называется несептированным мицелием.

Как же происходит развитие мицелия? Из споры выпячивается ростковая трубочка, которая удлиняется и затем отчленяется перегородкой от средней части, включающей спору. Ростовые трубочки затем еще удлиняются и получают новую перегородку, разделяясь на дистальную, или верхушечную, клетку и проксимальную, или внутреннюю. В дальнейшем верхушечная клетка удлиняется и вновь делится, отделяя вторую, более молодую по сравнению с первой, внутреннюю клетку. Так повторяется и дальше. В этом процессе внутренние клетки только вытягиваются, поперечное деление их происходит редко, но зато из них развиваются боковые ветви. На дистальном конце внутренней клетки образуется боковое выпячивание, принимающее цилиндрическую форму и отделяющееся затем перегородкой от производящей ее клетки. Новая клетка вырастает затем в боковую ветвь, растушую и ветвящуюся таким же образом, как и главная. Благодаря развитию ветвей на протяжении главной гифы они тем старше и сильнее развиты, чем ближе к основанию лежит то их отхождения — акропетальное ветвление.

Развитие несептированного мицелия происходит в общем таким же образом, но без образования поперечных перегородок. Рост происходит на кончиках гиф, где накапливается обильная протоплазма, заполняющая весь просвет, а в более задних частях происходит значительное развитие центральных вакуолей. В однородной среде, например на поверхности питательной желатины, гифы мицелия (как неклеточного, так и многоклеточного) разрастаются равномерно и радиально, так что мицелий имеет форму круга, нарастающего с краев. Центральная часть в нем самая старая, даже иногда отмершая, а периферическая — наиболее молодая.

При общем однообразии развития мицелия, который можно назвать типичным, в отдельных случаях наблюдается ряд специфических черт как макроскопического вида и общего характера роста, так и микроскопического строения. Макроскопический вид мицелия определяют прежде всего воздушные гифы. В одних случаях они формируются на самой поверхности субстрата и отчасти внутри его и тогда мицелий имеет вид плоского, прижатого к субстрату кружка; в других случаях, кроме того, развиваются более или менее обильные гифы, поднимающиеся в воздух и придающие мицелию некоторое сходство, например с куском ваты, возвышающимся над субстратом. Характер роста может быть различным у одного и того же гриба в зависимости от влажности, питания и др. Однако ряд форм грибов имеет специфические особенности, например образование пышного воздушного мицелия — разрушителя древесины.

Цвет мицелия чаше всего бывает снежно-белый, но с возрастом приобретает бурую окраску разных оттенков. Это связано с отложением пигмента в клеточных стенках и реже внутри самой клетки.

Различают мицелий истинный и псевдомицелий. Последний характеризуется тем, что отдельные клетки не связаны друг с другом и не имеют общей оболочки. Вместо истинного ветвления здесь наблюдается древовидное расположение клеток.

Для прикрепления к субстрату и извлечения из него питательных веществ в ходе эволюции у некоторых грибов сформировались специально предназначенные для этого органы: ризоиды и аппрессории, которые учитывают при идентификации грибов. Ризоиды — это корешкообразные, а аппрессории — короткие расширенные, иногда лопастеобразные выросты мицелия.

Грибы, паразитирующие на растениях, иногда формируют специальные ответвления мицелия — гаустории, которые, проникая непосредственно в клетки растений, обеспечивают питание грибов. Для гаусторий типично резкое изменение характера их роста по сравнению с ростом типичного мицелия, что объясняется воздействием протоплазмы живой клетки хозяина.

Склероции, тяжи, ризоморфы и хламидоспоры также являются видоизменениями мицелиального роста.

Склероции представляют собой септированные гифы грибов, образующие особые тела. При формировании склероциев оболочки гиф утолщаются и приобретают темную окраску. Сильно утолщена стенка гиф наружного слоя склероция, внутри же гифы более тонкостенные и обычно не окрашены. Склероции — это защитные приспособительные тела, которые позволяют грибу длительное время сохраняться в окружающей среде и обеспечивают его устойчивость к воздействию различных внешних факторов: температуры, солнечных лучей и др. Зрелые склероции содержат меньше влаги по сравнению с мицелием и много запасных веществ — липидов, гликогена.

Размеры склероциев колеблются от нескольких миллиметров до нескольких десятков сантиметров, а форма бывает самая разнообразная: сферическая, неправильная, в виде прямых или изогнутых рожков и др.

Структура клеток склероциев и механизм их образования различны, однако их формирование происходит путем увеличения ветвления мицелия и септирования гиф. Известны два способа образования склероциев: терминальный — на концах гиф; интеркалярный — в отдельных фрагментах главных гиф.

У многих грибов при развитии плодовых тел и некоторых вегетативных структур образуется ложная ткань — плектенхима (псевдопаренхима). В отличие от настоящей ткани паренхимы, возникающей в результате деления клеток в трех направлениях, плектенхима образуется путем сплетения и срастания. Если она состоит из клеток более или менее изодиаметрических, то ее называют параплектенхимой; если в ней заметно явное гифообразное строение (клетки удлиненной формы), то ее называют прозоплектенхимой.

Мицелиальные тяжи — вегетативная структура линейно агрегированных гиф. Диаметр мицелиальных тяжей зависит от количества гиф, которые концентрируются вокруг центральной основы.

В простейшем случае небольшое количество параллельно идущих гиф склеиваются друг с другом ослизненными наружными оболочками или вступают в более прочное соединение путем фор. мирования многочисленных коротких анастомозов. В других слу. чаях, когда тяжи массивны, их гифы получают определенную дифференцировку. Наружные элементы бывают более тонкими, образуя как бы кору вокруг центрального толстого ствола.

Ризоморфы — более сложные по агрегации гифы, которые отличаются у различных грибов интенсивностью роста центральной гифы, протяженностью боковых ветвлений, а также степенью дифференциации клеток гиф.

Наружные части у ризоморфы обычно темноокрашены и имеют определенное сходство с корнями высших растений. Они широко распространены у грибов с крупными плодовыми телами: у базидиальных, сумчатых и др.

Основное назначение мицелиальных тяжей и ризоморф состоит в обеспечении распространения грибов в субстрате и передвижении по гифам питательных веществ.

Хламидоспоры — это изменения мицелия в зрелых и старых культурах на концах или по его ходу. Основная функция хламидоспор не размножение, а сохранение вида. Форма их обычно круглая, овальная или слегка удлиненная, диаметр превышает диаметр мицелия. У некоторых грибов стенка двухконтурная, поверхность гладкая или шероховатая. Хламидоспоры могут возникать на концах мицелия, тогда они называются терминальными, по ходу мицелия — интерполярными (промежуточными).

В старых культурах часто наблюдают большие скопления хламидоспор причудливой формы, напоминающей четки или ожерелье. Молодые и зрелые хламидоспоры способны прорастать. Старые клетки дегенерируют.

Споры. С помощью спор грибы не только размножаются, но также и распространяются в окружающей среде. Этому способствует высокая устойчивость оболочек спор к воздействию агрессивных факторов. Споры подразделяют на эндоспоры, образующиеся внутри особых вместилищ — спорангиев (сумок), и экзоспоры, располагающиеся на мицелии.

У совершенных грибов споры подразделяют на ооспоры, зигоспоры, аскоспоры, базидиоспоры, эндоспоры, фиалоспоры, хламидоспоры. Споры несовершенных грибов в соответствии с размерами и происхождением также делят на несколько групп. К эндоспорам, образующимся внутри мицелия путем сегментации последнего, относят таллоспоры, включающие в себя артроспоры, хламидоспоры и бластоспоры. Кроме того, для несовершенных грибов характерно образование конидий, макроконидий, алейрий (микроконидий) и гемиспор, считающихся несовершенными конидиями.

Гемиспоры более прочно связаны с мицелием и представляют, собой один или два сегмента, отшнуровывающихся после поперечного деления мицелиальной нити. Форма их цилиндрическая, иногда округлая или многогранная, оболочка двухконтурная.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]