
- •1. Понятие электропривода. Структура и назначение основных узлов. Области применения
- •2. Функции электропривода. Энергетический канал. Координаты привода. Структура и назначение основных узлов
- •3. Классификация электроприводов. Области применения.
- •4. Основы механики электропривода. Уравнение движения. Динамический момент. Режимы работы электропривода
- •5. Основы Механики электропривода. Приведение моментов сопротивлений и моментов инерции.
- •6. Механические характеристики двигателей и производственных механизмов. Классификация моментов. Жесткость механических характеристик
- •7. Механические характеристики двигателей и механизмов в установившемся режиме. Понятие статической устойчивости режима
- •8. Регулирование координат электропривода. Понятия регулирования и изменения скорости. Естественные и искусственные характеристики. Характеристики способов регулирования
- •9. Эппт. Двигатели постоянного тока. Определения, классификация. Принцип работы, основные уравнения, регулирующая роль эдс
- •Основные уравнения эппт, регулирующая роль эдс
- •Источника тока
- •Возбуждения
- •Возбуждения
- •14. Эппт. Номинальный режим. Допустимые значения координат
- •19. Эппт. Регулирование координат изменением магнитного потока: схема, кривая намагничивания, механические и электромеханические характеристики. Оценка способа
- •Ослаблении поля
- •20. Эппт. Регулирование координат изменением напряжения на якоре: схема, механические и электромеханические характеристики. Оценка способа
- •21. Эппт. Регулирование координат в замкнутых структурах. Система уп-Дв, замкнутая по скорости: схема, характеристики.
- •Тока, замкнутого по скорости
- •22. Эппт. Регулирование координат в замкнутых структурах. Система уп-Дв с нелинейной обратной связью по моменту: схема, характеристики
- •23. Эппт. Регулирование координат в замкнутых структурах. Замкнутая система источник тока - двигатель: схемы, характеристики, основные соотношения
- •24. ЭпПеТ. Модель асинхронного двигателя. Принцип получения движущегося магнитного тока
- •Принцип получения движущегося магнитного поля
- •25. ЭпПеТ. Модель асинхронного двигателя (ад). Процессы в режиме хх и под нагрузкой: векторная диаграмма, параметр скольжения s, основные соотношения. Схема замещения
- •Процессы под нагрузкой
- •26. ЭпПеТ. Механические характеристики ад. Анализ основных режимов работы
- •27. Номинальные данные ад. Построение естественных характеристик ад с кз ротором
- •Двигателя с к.З. Ротором
- •28. Ад с короткозамкнутым ротором: Частотное регулирование координат: схемы, характеристики, оценка способа
- •29. Ад с короткозамкнутым ротором: Параметрическое регулирование координат изменением напряжения питания статорной обмотки: схемы, характеристики, оценка способа
- •30. Ад с фазным ротором. Реостатное регулирование координат: схемы, характеристики, основные соотношения. Оценка способа
- •31. Ад с фазным ротором. Каскадные схемы регулирования. Схема машино-вентильного каскада. Принцип работы, основные соотношения
- •32. Электропривод переменного тока с машиной двойного питания. Схема, принцип действия, характеристики, соотношение скоростей и частот
- •33. Синхронный двигатель. Конструктивные особенности, закономерности работы: схема замещения, векторная диаграмма, характеристики, связь между механическими и электрическими величинами
- •Потери в установившихся режимах
- •48. Энергетика электропривода. Потери в переходных режимах: основные зависимости, Jмах, Тдоп
- •49. Энергетика электропривода. Нагрев и охлаждение двигателя, уравнение теплового баланса, энергосбережение средствами электропривода
- •50. Общие требования к организации процесса проектирования, этапы процесса проектирования
- •51. Нагрузочные диаграммы и тахограммы. Определения, последовательность построения нагрузочной диаграммы на примере механизма со ступенчатым изменением нагрузки
- •52. Нагрузочные диаграммы и тахограммы. Выбор двигателя. Проверка по перегрузочной способности. Примеры для механизмов с различными характеристиками
- •53. Проектирование эп. Проверка по нагреву. Тепловая модель двигателя, Анализ стандартных режимов
- •Электрической машины
- •Времени от мощности электрической машины
- •55. Проектирование эп. Проверка двигателей по нагреву в продолжительном режиме
- •54. Проектирование эп. Проверка двигателей по нагреву в повторно-кратковременном режиме
51. Нагрузочные диаграммы и тахограммы. Определения, последовательность построения нагрузочной диаграммы на примере механизма со ступенчатым изменением нагрузки
52. Нагрузочные диаграммы и тахограммы. Выбор двигателя. Проверка по перегрузочной способности. Примеры для механизмов с различными характеристиками
Исходные данные для выбора двигателя обычно представляются в виде нагрузочных диаграмм механизма, т.е. зависимостей Мс(t)и (t)и приведенного момента инерцииJм(см. п.2.2). Зависимость (t)иногда называют тахограммой. ИногдаМс(t)зависит от пути, в этом случае при известной скорости можно перестроить заданный графикМс(), получив его в видеМс(t).
Нагрузочные диаграммы механизма, вообще говоря, могут иметь любой вид, однако всегда можно выделить цикл, т.е. промежуток времени tц, через который диаграмма повторяется. Если характер работы таков, что режимы воспроизводятся плохо (лифт, подъемный кран и т.п.), строят нагрузочные диаграммы для наиболее вероятного или наиболее тяжелого цикла.
Следует особо подчеркнуть, что для обоснованного выбора двигателя требуемая нагрузочная диаграмма механизма должна быть известна. На рис. 7.2 в качестве примера приведены требуемые нагрузочная диаграмма и тахограмма некоторого механизма (верхние для графика).
Рис. 7.2. Нагрузочные диаграммы механизма и двигателя
Для предварительного выбора двигателя по известной нагрузочной диаграмме механизма можно найти средний момент статической нагрузки
где Мc i– момент статической нагрузки наi-ом интервале;
ti – продолжительностьi-ого интервала;
n – число интервалов, гдеMс=const.
Номинальный момент искомого двигателя с учетом динамических нагрузок может быть оценен как
.
В качестве номинальной скорости следует взять макс, если регулирование однозонное вниз от основной скорости, илимин, если регулирование однозонное вверх от основной скорости. По найденным таким образом величинамМни нможно выбрать двигатель по каталогу и, следовательно, определить его момент инерции, построить механические характеристики, кривые переходных процессов.
После того, как двигатель предварительно выбран, можно перейти к построению нагрузочной диаграммы двигателя, т.е. зависимостиМ(t). Это построение сводится к решению уравнения движения
одним из описанных в гл.5 приемов.
На рис. 7.2 внизу показана нагрузочная диаграмма двигателя, построенная в предположении, что при изменении скорости Mconst, а при набросе и сбросе нагрузки привод работает на линейной механической характеристике.
Нетрудно видеть, что нагрузочная диаграмма двигателя существенно отличается от нагрузочной диаграммы механизма. На рис. 7.3 – 7.5 показано еще несколько типичных нагрузочных диаграмм и соответствующие
динамические характеристики привода.
Рис. 7.3 соответствует случаю, когда механизм с Mс=constработает
в режиме изменяющейся скорости. Идеализированная динамическая механическая характеристика показана внизу. Следует отметить, что при построении нагрузочных диаграмм двигателя часто прибегают к подобной идеализации, так как для целей выбора двигателя детали диаграммы, обусловленные особенностями конкретной характеристики, обычно несущественны.
Рис. 7.3. Нагрузочная диаграмма при Мс = const и = var
На рис. 7.4 показана нагрузочная диаграмма привода, работающего в режиме частых пусков и торможений, осуществляемых по характеристикам, приведенным внизу. Графики (t)М(t) построены в соответствии с правилами, изложенными в п. 5.2.
Рис. 7.4. Нагрузочная диаграмма при частых пусках – торможениях
На рис. 7.5 показаны нагрузочные диаграммы электропривода с пиковым характером нагрузки при линейной механической характеристике двигателя. Момент статической нагрузки изменяется мгновенно от Мс0доМс1. Момент, развиваемый двигателем при приложенииМс1выразится как
а при снятии нагрузки
где
.
Рис. 7.5. Нагрузочная диаграмма маховикового электропривода
Величины M,Ми ,при заданныхt1иt2 определяются значениемTм. ЕслиTммала, то момент, развиваемый двигателем, будет повторять изменениеМс. Если, напротив,Tмвелика, тоM,Ми ,будут мало отличаться от соответствующих средних значенийМс сри срблагодаря тому, что энергия, запасенная во вращающихся частях привода на интервалеt1(Мс=Мс0) будет расходоваться на покрытие пика нагрузки на интервалеt2(Мс=Мс1). При срэта энергия пропорциональна площадям, заштрихованным на рис. 7.5. «Спрямление» нагрузочной диаграммы двигателя при пиковом характере нагрузки часто оказывается весьма полезным, так как позволяет снизить требования к перегрузочной способности двигателя и уменьшить потери в двигателе.
Увеличение Тмв этих случаях достигается использованием
маховика с моментом инерциии выбором соответствующей величины
жесткости механической характеристики
двигателя.
Нагрузочная диаграмма двигателя, как отмечалось, служит основой для проверки предварительно выбранного двигателя по перегрузочной способности и по нагреву.
Проверка по перегрузочной способности сводится к проверке выполнения условия
,
где
- максимальный момент из нагрузочной
диаграммы двигателя;
- допустимый по
перегрузке момент двигателя.
Для двигателя постоянного тока нормального исполнения
;
для асинхронного двигателя с учетом возможного снижения напряжения питания на 10%
;
для синхронного двигателя нормального исполнения
.
Асинхронные короткозамкнутые двигатели дополнительно проверяются по пусковому моменту; для нормального пуска должно выполняться условие:
,
где
- максимальный момент статической
нагрузки, при котором должен выполняться
пуск привода;
- пусковой момент
двигателя.
Проверка по нагреву, сводящаяся к оценке фактической температуры изоляции обмоток двигателя и сравнению ее с допустимой, также выполняется с использованием нагрузочных диаграмм двигателя. Эта операция выполняется с использованием тепловой модели двигателя.