
- •Оглавление
- •Электромагнитные явления 12
- •От авторов
- •Введение
- •Электромагнитные явления
- •1.1. Магнитное поле в вакууме и его характеристики. Магнитное поле и магнитный момент кругового тока
- •1.2. Закон Био-Савара-Лапласа
- •1.3. Применение закона Био-Савара-Лапласа к расчету магнитных полей прямолинейного и кругового токов
- •1.4. Магнитное взаимодействие токов. Силы Лоренца и Ампера
- •2.1. Циркуляция индукции магнитного поля. Вихревой характер магнитного поля. Теорема о циркуляции индукции магнитного поля (закон полного тока для магнитного поля)
- •2.2. Применение закона полного тока для расчета магнитных полей
- •2.3. Магнитный поток. Магнитные цепи
- •2.4. Работа по перемещению проводника и контура с током в магнитном поле
- •3.1. Природа магнитных свойств вещества. Магнитные моменты атомов. Микро- и макротоки (молекулярные токи)
- •3.2. Магнитное поле в веществе. Намагниченность
- •3.3. Диамагнетизм. Диамагнетики и их свойства
- •3.4. Парамагнетизм. Парамагнетики и их свойства
- •3.5. Элементы теории ферромагнетизма. Ферромагнетики и их свойства
- •3.6. Антиферромагнетизм. Антиферромагнетики и их свойства
- •3.7. Граничные условия на поверхности раздела двух магнетиков
- •4.1. Явление электромагнитной индукции. Основной закон электромагнитной индукции. Правило (закон) Ленца
- •4.2. Вывод основного закона электромагнитной индукции из закона сохранения и превращения энергии
- •4.3. Явление самоиндукции. Магнитное поле бесконечно длинного соленоида. Коэффициенты индуктивности и взаимной индуктивности
- •4.4. Явление самоиндукции при замыкании и размыкании электрической цепи
- •4.5. Энергия магнитного поля. Объемная плотность энергии магнитного поля
- •5.1. Движение заряженных частиц в однородном электрическом поле
- •5.2. Движение заряженных частиц в однородном магнитном поле
- •5.3. Движение заряженных частиц в электрических и магнитных полях. Гальваномагнитные явления
- •5.4. Применение электронных пучков в науке и технике. Понятие об электронной оптике
- •5.5. Эффект Холла
- •6.1. Нелинейный осциллятор. Физические системы, содержащие нелинейность
- •6.2. Получение электромагнитных колебаний. Собственные электромагнитные колебания. Дифференциальное уравнение собственных электромагнитных колебаний и его решение
- •6.3. Затухающие электромагнитные колебания. Дифференциальное уравнение затухающих электромагнитных колебаний и его решение. Характеристики затухающих электромагнитных колебаний
- •6.4. Вынужденные электромагнитные колебания. Дифференциальное уравнение вынужденных электромагнитных колебаний и его решение. Резонанс
- •7.1. Основные положения теории Максвелла
- •7.2. Представление эдс индукции с помощью теоремы Стокса
- •7.3. Представление циркуляции с помощью теоремы Стокса
- •7.4. Ток смещения
- •7.5. Система уравнений Максвелла
- •7.6. Электромагнитные волны. Волновое уравнение. Основные свойства, получение и распространение электромагнитных волн. Энергия электромагнитной (световой) волны. Вектор Умова-Пойтинга
- •7.7. Источники электромагнитного излучения
- •8.1. Релятивистское преобразование электромагнитных полей, зарядов и токов
- •8.2. Инвариантность уравнений Максвелла относительно преобразований Лоренца
- •9.1. Квазистационарное электромагнитное поле
- •9.2. Квазистационарные электрические токи
- •Заключение
- •Рекомендательный список литературы Основной
- •Дополнительный
- •Редактор с.П. Тарасова Компьютерная верстка и макет
3.6. Антиферромагнетизм. Антиферромагнетики и их свойства
Антиферромагнетизм – это магнитоупорядоченное состояние вещества, характеризующееся тем, что магнитные моменты соседних частиц вещества (атомных носителей магнетизма) ориентированы навстречу друг другу (антипараллельно), и поэтому намагниченность тела в целом в отсутствие магнитного поля равна нулю. Этим антиферромагнетизм отличается от ферромагнетизма, при котором одинаковая ориентация всех атомных магнитных моментов приводит к высокой намагниченности тела.
Антиферромагнитное упорядочение характеризуется тем, что средние магнитные моменты всех (или большей части) ближайших соседей любого иона направлены навстречу его собственному магнитному моменту. Для этого обменное взаимодействие должно быть отрицательным (при ферромагнетизме обменное взаимодействие положительно, и все магнитные моменты направлены в одну сторону). В каждом атиферромагнетике устанавливается определенный порядок чередования магнитных моментов.
Порядок чередования магнитных моментов вместе с их направлением относительно кристаллографических осей определяет антиферромагнитную структуру вещества (ее изучают главным образом методами нейтронографии). Такую структуру можно представить как систему вставленных друг в друга пространственных решеток магнитных ионов (магнитных подрешеток), в узлах каждой из которых находятся параллельные друг другу магнитные моменты. В атиферромагнетике каждая подрешетка состоит из магнитных ионов одного сорта. Суммарные магнитные моменты подрешеток компенсируются, поэтому антиферромагнетик в целом в отсутствие внешнего магнитного поля не имеет результирующего магнитного момента. Под действием внешнего магнитного поля антиферромагнетики (подобно парамагнетикам) приобретают слабую намагниченность. Для магнитной восприимчивости атиферромагнетиков типичны значения 10-410-6.
За создание антиферромагнитного порядка и определенную ориентацию магнитных моментов ионов относительно кристаллографических осей ответственны два рода сил: за порядок - силы обменного взаимодействия (электрической природы), за ориентацию - силы магнитной анизотропии. В антиферромагнетиках обменные силы стремятся установить каждую пару соседних магнитных моментов строго антипараллельно. Но они не могут предопределить направление магнитных моментов подрешеток относительно кристаллографических осей. Направление магнитных моментов в кристалле называется осью антиферромагнетизма или (по аналогии с ферромагнетиками) осью легкого намагничивания и определяется силами магнитной анизотропии.
В соответствии с этими двумя типами сил при теоретическом описании антиферромагнетизма вводят два эффективных магнитных поля: обменное поле HE и поле анизотропии HA. Представление о том, что в ферромагнетике действуют два эффективных магнитных поля, позволяет объяснить многие свойства, в частности поведение антиферромагнетика в переменных внешних магнитных полях (антиферромагнитный резонанс).
В сильных магнитных
полях при T<TN
наблюдаются магнитные фазовые переходы.
В простейшем двухподрешеточном
атиферромагнетике с одной осью легкого
намагничивания (ОЛН) первый переход
происходит в магнитном поле, напряженность
которого
,
приложенном вдоль ОЛН. В этом поле
направление намагниченности подрешеток
скачком изменяется на 90o
относительно направления ОЛН и
приложенного поля (переход в спин-флоп
фазу). Второй фазовый переход происходит
в поле с напряженностью
.
В этом случае направления намагниченности
подрешеток становятся параллельными
друг другу и совпадают с направление
приложенного поля.
Изучение антиферромагнетизма внесло существенный вклад в развитие современных представлений о физике магнитных явлений. Открыты новые типы магнитных структур: слабый ферромагнетизм, геликоидальные структуры и др.; обнаружены новые явления: пьезомагнетизм, магнитоэлектрический эффект, магнетокалорический эффект; расширены представления об обменном и других типах взаимодействия в магнетиках.