Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Кон.эл.ток-04-2.doc
Скачиваний:
278
Добавлен:
12.04.2015
Размер:
5.43 Mб
Скачать

7.2. Вторичная и автоэлектронная эмиссия

При бомбардировке поверхностей металлов, полупроводников или диэлектриков пучком электронов наблюдается испускание вторичных электронов. Такое явление называется вторичной электронной эмиссией (в электронных лампах его чаще называют динатронным эффектом). В пучке эмитируемых электронов наблюдаются три группы электронов:

1) электроны, упруго отраженные поверхностью эмиттера;

2) неупругоотраженные электроны;

3) вторичные электроны, т.е. такие электроны, которые выбиваются из эмиттера первичными электронами.

Для количественного описания явления принято вводить коэффициент вторичной эмиссии . Так называют отношение полного количества электронов N, испущенных эмитирующей поверхностью, к числу первичных электронов No:

. (7.13)

Коэффициент вторичной эмиссии зависит от природы, технологии изготовления и от состояния поверхности облучаемого тела, а также от скорости электронов в падающем пучке и от угла падения последнего. Коэффициент  не зависит от интенсивности пучка первичных электронов, если интенсивность не настолько велика, чтобы приводить к испарению и разрушению поверхности тела.

Выход вторичных электронов, образовавшихся внутри эмиттера, в сильной степени зависит от природы последнего. В металлах, где велика концентрация электронов проводимости, вторичные электроны часто сталкиваются с ними и растрачивают свою энергию. В этих условиях вероятность выхода вторичных электронов наружу мала. Напротив, в полупроводниках и диэлектриках концентрация электронов проводимости мала, столкновения с ними происходят реже, а вероятность выхода электронов из эмиттера возрастает в несколько раз. Поэтому не существуют металлы с большими коэффициентами . Эффективные эмиттеры встречаются только среди полупроводников и диэлектриков.

Вторичная электронная эмиссия используется в фотоэлектронных умножителях, предназначенных для усиления слабых электрических токов.

Фотоэлектронный умножитель представляет собой вакуумную трубку с катодом (фотокатодом) и анодом. Между фотокатодом и анодом находятся несколько электродов (эмиттеров) (рис. 7.5). Свет, падающий на фотокатод, вырывает несколько электронов, которые попадают на эмиттер Э1, проходя некоторую разность потенциалов между ними. Из эмиттера Э1 выбивается N электронов, которые попадают на второй эмиттер Э2, проходя разность потенциалов между Э1 и Э2. Электроны, выбитые из второго эмиттера, попадают на третий эмиттер. Такой процесс умножения повторяется столько раз, сколько эмиттеров имеется в фотоэлектронном умножителе. Электроны, выбитые из последнего эмиттера, попадают на анод. Если фотоэлектронный умножитель содержит n эмиттеров, то на аноде, который называется коллектором, появляется усиленный в Nn фотоэлектронный ток.

Эмиссия электронов из поверхности металлов может происходить под действием сильного электрического поля, вырывающего электроны из металла. Такое явление называется автоэлектронной или холодной эмиссией.

Объяснение механизма автоэлектронной эмиссии возможно только на основе волновой (квантовой) механики, а поэтому в данном разделе не рассматривается.