
- •Конспект лекций
- •Оглавление
- •От авторов
- •Введение
- •Лекция 1. Электростатика в вакууме и веществе. Электрическое поле
- •1.1. Предмет классической электродинамики
- •1.2. Электрический заряд и его дискретность. Теория близкодействия
- •1.3. Закон Кулона. Напряженность электрического поля. Принцип суперпозиции электрических полей
- •1.3.1. Границы применимости закона Кулона
- •1.3.2. Принцип суперпозиции электрических полей. Электрическое поле диполя
- •1.4. Поток вектора напряженности электростатического поля
- •1.5. Теорема Остроградского-Гаусса для электрического поля в вакууме
- •1.6. Работа электрического поля по перемещению электрического заряда. Циркуляция вектора напряженности электрического поля
- •1.7. Энергия электрического заряда в электрическом поле
- •1.8. Потенциал и разность потенциалов электрического поля. Связь напряженности электрического поля с его потенциалом
- •1.8.1. Потенциал и разность потенциалов электрического поля
- •1.8.2. Связь напряженности электрического поля с его потенциалом
- •1.9. Эквипотенциальные поверхности
- •1.10. Основные уравнения электростатики в вакууме
- •1.11.2. Поле бесконечно протяженной, однородно заряженной плоскости
- •1.11.3. Поле двух бесконечно протяженных, равномерно заряженных плоскостей
- •1.11.4. Поле заряженной сферической поверхности
- •1.11.5. Поле объёмно заряженного шара
- •Лекция 2. Проводники в электрическом поле
- •2.1. Проводники и их классификация
- •2.2. Электростатическое поле в полости идеального проводника и у его поверхности. Электростатическая защита. Распределение зарядов в объеме проводника и по его поверхности
- •2.3. Электроемкость уединенного проводника и ее физический смысл
- •2.4. Конденсаторы и их емкость
- •2.4.1. Емкость плоского конденсатора
- •2.4.2. Емкость цилиндрического конденсатора
- •2.4.3. Емкость сферического конденсатора
- •2.5. Соединения конденсаторов
- •2.5.1. Последовательное соединение конденсаторов
- •2.5.2. Параллельное и смешанное соединения конденсаторов
- •2.6. Классификация конденсаторов
- •Лекция 3. Статическое электрическое поле в веществе
- •3.1. Диэлектрики. Полярные и неполярные молекулы. Диполь в однородном и неоднородном электрических полях
- •3.1.1. Диполь в однородном электрическом поле
- •3.1.2. Диполь в неоднородном внешнем электрическом поле
- •3.2. Свободные и связанные (поляризационные) заряды в диэлектриках. Поляризация диэлектриков. Вектор поляризации (поляризованность)
- •3.4. Условия на границе раздела двух диэлектриков
- •3.5. Электрострикция. Пьезоэлектрический эффект. Сегнетоэлектрики, их свойства и применение. Электрокалорический эффект
- •3.6. Основные уравнения электростатики диэлектриков
- •Лекция 4. Энергия электрического поля
- •4.1. Энергия взаимодействия электрических зарядов
- •4.2. Энергия заряженных проводников, диполя во внешнем электрическом поле, диэлектрического тела во внешнем электрическом поле, заряженного конденсатора
- •4.3. Энергия электрического поля. Объемная плотность энергии электрического поля
- •4.4. Силы, действующие на макроскопические заряженные тела, помещенные в электрическое поле
- •Лекция 5. Постоянный электрический ток
- •5.1. Постоянный электрический ток. Основные действия и условия существования постоянного тока
- •5.2. Основные характеристики постоянного электрического тока: величина /сила/ тока, плотность тока. Сторонние силы
- •5.3. Электродвижущая сила (эдс), напряжение и разность потенциалов. Их физический смысл. Связь между эдс, напряжением и разностью потенциалов
- •Лекция 6. Классическая электронная теория проводимости металлов. Законы постоянного тока
- •6.1. Классическая электронная теория электропроводности металлов и ее опытные обоснования. Закон Ома в дифференциальной и интегральной формах
- •6.2. Электрическое сопротивление проводников. Изменение сопротивления проводников от температуры и давления. Сверхпроводимость
- •6.3. Соединения сопротивлений: последовательное, параллельное, смешанное. Шунтирование электроизмерительных приборов. Добавочные сопротивления к электроизмерительным приборам
- •6.3.1. Последовательное соединение сопротивлений
- •6.3.2. Параллельное соединение сопротивлений
- •6.3.3. Шунтирование электроизмерительных приборов. Добавочные сопротивления к электроизмерительным приборам
- •6.4. Правила (законы) Кирхгофа и их применение к расчету простейших электрических цепей
- •6.5. Закон Джоуля-Ленца в дифференциальной и интегральной формах
- •6.6. Энергия, выделяющаяся в цепи постоянного тока. Коэффициент полезного действия (кпд) источника постоянного тока
- •Лекция 7. Электрический ток в вакууме, газах и жидкостях
- •7.1. Электрический ток в вакууме. Термоэлектронная эмиссия
- •7.2. Вторичная и автоэлектронная эмиссия
- •7.3. Электрический ток в газе. Процессы ионизации и рекомбинации
- •7.3.1. Несамостоятельная и самостоятельная проводимость газов
- •7.3.2. Закон Пашена
- •7.3.3. Виды разрядов в газах
- •7.3.3.1. Тлеющий разряд
- •7.3.3.2. Искровой разряд
- •7.3.3.3. Коронный разряд
- •7.3.3.4. Дуговой разряд
- •7.4. Понятие о плазме. Плазменная частота. Дебаевская длина. Электропроводность плазмы
- •7.5. Электролиты. Электролиз. Законы электролиза
- •7.6. Электрохимические потенциалы
- •7.7. Электрический ток через электролиты. Закон Ома для электролитов
- •7.7.1. Применение электролиза в технике
- •Лекция 8. Электроны в кристаллах
- •8.1. Квантовая теория электропроводности металлов. Уровень Ферми. Элементы зонной теории кристаллов
- •8.2. Явление сверхпроводимости с точки зрения теории Ферми-Дирака
- •8.3. Электропроводность полупроводников. Понятие о дырочной проводимости. Собственные и примесные полупроводники. Понятие о p-n – переходе
- •8.3.1. Собственная проводимость полупроводников
- •8.3.2. Примесные полупроводники
- •8.4. Электромагнитные явления на границе раздела сред
- •8.4.1. P-n – переход
- •8.4.2. Фотопроводимость полупроводников
- •8.4.3. Люминесценция вещества
- •8.4.4. Термоэлектрические явления. Закон Вольта
- •8.4.5. Эффект Пельтье
- •8.4.6. Явление Зеебека
- •8.4.7. Явление Томсона
- •Заключение
- •Библиографический список Основной
- •Дополнительный
6.5. Закон Джоуля-Ленца в дифференциальной и интегральной формах
Двигаясь под действием силы F = eE, электрон проводимости приобретает некоторую энергию
.
(6.53)
Провзаимодействовав с ионом кристаллической решетки, он отдает ему эту энергию, которая выделяется в проводнике в виде тепла.
Если взаимодействие электрона проводимости с ионом кристаллической решетки происходило в течение времени t, то за это время в проводнике выделится в виде тепла энергия
,
(6.54)
где
– число взаимодействий электрона
проводимости с ионом кристаллической
решетки.
Так как
то
,
(6.55)
где
– время свободного пробега электрона
проводимости.
Если в объеме проводника содержится n электронов проводимости, то энергия, переданная единице объема проводника в единицу времени всеми электронами,
.
(6.56)
Выражение (6.56) является математической формой записи закона Джоуля-Ленца в дифференциальной форме.
Из формулы (6.56) можно получить формулу закона Джоуля Ленца в интегральной форме. Имеем
,
где = 1/; E = U/dl, dV = S dl.
Следовательно,
или
,
(6.57)
где
- сопротивление проводника;
U = IR – напряжение.
Количество тепла, выделившееся в проводнике за время t,
.
(6.58)
Выражение (6.58) является математической формой записи закона Джоуля-Ленца в интегральной форме.
В случае постоянного тока
.
(6.59)
Классическая электронная теория проводимости металлов смогла объяснить не только электропроводность металлов и сплавов, но и их теплопроводность, некоторые оптические свойства вещества, что является её крупным достижением. Однако с её помощью невозможно объяснить такие экспериментальные факты, как независимость теплоемкости металлов от наличия электронов проводимости и сверхпроводимости. Это связано с тем, что в ней электроны проводимости подчиняются законам идеального газа, законам статистики Максвелла-Больцмана. В действительности же для электронов проводимости справедлива квантовая статистика, и они подчиняются закону статистики Ферми-Дирака.
6.6. Энергия, выделяющаяся в цепи постоянного тока. Коэффициент полезного действия (кпд) источника постоянного тока
На участке цепи, не содержащей ЭДС, силы электрического поля совершают работу по перемещению электрического заряда, которая выделяется в проводнике в виде тепла:
.
(6.60)
Если в цепи имеется ЭДС, то работа по перемещению электрического заряда совершается сторонними и электрическими силами, численно равная энергии, выделяющейся в этой цепи:
.
(6.61)
В замкнутой цепи энергия, выделяющаяся в проводнике численно равна работе:
.
(6.62)
Таким образом, в замкнутой цепи внутри источника сторонние силы совершают работу по разделению зарядов, создают электрическое поле и запасают энергию, которая расходуется во внешней цепи на поддержание электрического поля, или выделяется в виде тепла. В замкнутой цепи совершают работу только сторонние силы.
Известно, что работа, совершаемая в единицу времени, называется мощностью:
. (6.63)
Это оказывается справедливым и для постоянного электрического тока. Поэтому для участка цепи, в котором отсутствует ЭДС, мощность
. (6.64)
При наличии ЭДС
.
(6.65)
В замкнутой цепи
.
(6.66)
Мощность во внешней цепи является полезной мощностью
.
(6.67)
Отношение полезной мощности (мощности во внешней цепи) к мощности, развиваемой источником тока (полной мощности), называют коэффициентом полезного действия (КПД):
.
(6.68)
Из выражения (6.67) видно, что при r0, 1.
Найдем соотношение между R и r, при котором полезная мощность максимальна. Для этого проведем исследование функции Pвн = f(R). Определяем первую производную и приравниваем её к нулю:
.
(6.69)
Определяем вторую производную и исследуем её знак:
. (6.70)
Из формул (6.64) и (6.65) видно, что в том случае, когда сопротивление внешнего участка цепи равно внутреннему сопротивлению источника тока (R = r), мощность во внешней цепи максимальна:
. (6.71)
При этом коэффициент полезного действия (при максимальном значении мощности во внешней цепи)
. (6.72)
Можно установить зависимость КПД источника тока от тока во внешней цепи ( = f (I)):
.
(6.73)
Графики
зависимости мощности во внешней цепи,
полной мощности и коэффициента полезного
действия источника тока от тока в цепи
представлены на рис. 6. 12. Зависимость
КПД от сопротивления внешнего участка
цепи
= f(R)
. (6.74)
Из вышеизложенного видно, что получение Pmax и max невозможно, т.к. при Pвн = Pmax, = 0,5, а при 1, Pвн0.