
- •Конспект лекций
- •Оглавление
- •От авторов
- •Введение
- •Лекция 1. Электростатика в вакууме и веществе. Электрическое поле
- •1.1. Предмет классической электродинамики
- •1.2. Электрический заряд и его дискретность. Теория близкодействия
- •1.3. Закон Кулона. Напряженность электрического поля. Принцип суперпозиции электрических полей
- •1.3.1. Границы применимости закона Кулона
- •1.3.2. Принцип суперпозиции электрических полей. Электрическое поле диполя
- •1.4. Поток вектора напряженности электростатического поля
- •1.5. Теорема Остроградского-Гаусса для электрического поля в вакууме
- •1.6. Работа электрического поля по перемещению электрического заряда. Циркуляция вектора напряженности электрического поля
- •1.7. Энергия электрического заряда в электрическом поле
- •1.8. Потенциал и разность потенциалов электрического поля. Связь напряженности электрического поля с его потенциалом
- •1.8.1. Потенциал и разность потенциалов электрического поля
- •1.8.2. Связь напряженности электрического поля с его потенциалом
- •1.9. Эквипотенциальные поверхности
- •1.10. Основные уравнения электростатики в вакууме
- •1.11.2. Поле бесконечно протяженной, однородно заряженной плоскости
- •1.11.3. Поле двух бесконечно протяженных, равномерно заряженных плоскостей
- •1.11.4. Поле заряженной сферической поверхности
- •1.11.5. Поле объёмно заряженного шара
- •Лекция 2. Проводники в электрическом поле
- •2.1. Проводники и их классификация
- •2.2. Электростатическое поле в полости идеального проводника и у его поверхности. Электростатическая защита. Распределение зарядов в объеме проводника и по его поверхности
- •2.3. Электроемкость уединенного проводника и ее физический смысл
- •2.4. Конденсаторы и их емкость
- •2.4.1. Емкость плоского конденсатора
- •2.4.2. Емкость цилиндрического конденсатора
- •2.4.3. Емкость сферического конденсатора
- •2.5. Соединения конденсаторов
- •2.5.1. Последовательное соединение конденсаторов
- •2.5.2. Параллельное и смешанное соединения конденсаторов
- •2.6. Классификация конденсаторов
- •Лекция 3. Статическое электрическое поле в веществе
- •3.1. Диэлектрики. Полярные и неполярные молекулы. Диполь в однородном и неоднородном электрических полях
- •3.1.1. Диполь в однородном электрическом поле
- •3.1.2. Диполь в неоднородном внешнем электрическом поле
- •3.2. Свободные и связанные (поляризационные) заряды в диэлектриках. Поляризация диэлектриков. Вектор поляризации (поляризованность)
- •3.4. Условия на границе раздела двух диэлектриков
- •3.5. Электрострикция. Пьезоэлектрический эффект. Сегнетоэлектрики, их свойства и применение. Электрокалорический эффект
- •3.6. Основные уравнения электростатики диэлектриков
- •Лекция 4. Энергия электрического поля
- •4.1. Энергия взаимодействия электрических зарядов
- •4.2. Энергия заряженных проводников, диполя во внешнем электрическом поле, диэлектрического тела во внешнем электрическом поле, заряженного конденсатора
- •4.3. Энергия электрического поля. Объемная плотность энергии электрического поля
- •4.4. Силы, действующие на макроскопические заряженные тела, помещенные в электрическое поле
- •Лекция 5. Постоянный электрический ток
- •5.1. Постоянный электрический ток. Основные действия и условия существования постоянного тока
- •5.2. Основные характеристики постоянного электрического тока: величина /сила/ тока, плотность тока. Сторонние силы
- •5.3. Электродвижущая сила (эдс), напряжение и разность потенциалов. Их физический смысл. Связь между эдс, напряжением и разностью потенциалов
- •Лекция 6. Классическая электронная теория проводимости металлов. Законы постоянного тока
- •6.1. Классическая электронная теория электропроводности металлов и ее опытные обоснования. Закон Ома в дифференциальной и интегральной формах
- •6.2. Электрическое сопротивление проводников. Изменение сопротивления проводников от температуры и давления. Сверхпроводимость
- •6.3. Соединения сопротивлений: последовательное, параллельное, смешанное. Шунтирование электроизмерительных приборов. Добавочные сопротивления к электроизмерительным приборам
- •6.3.1. Последовательное соединение сопротивлений
- •6.3.2. Параллельное соединение сопротивлений
- •6.3.3. Шунтирование электроизмерительных приборов. Добавочные сопротивления к электроизмерительным приборам
- •6.4. Правила (законы) Кирхгофа и их применение к расчету простейших электрических цепей
- •6.5. Закон Джоуля-Ленца в дифференциальной и интегральной формах
- •6.6. Энергия, выделяющаяся в цепи постоянного тока. Коэффициент полезного действия (кпд) источника постоянного тока
- •Лекция 7. Электрический ток в вакууме, газах и жидкостях
- •7.1. Электрический ток в вакууме. Термоэлектронная эмиссия
- •7.2. Вторичная и автоэлектронная эмиссия
- •7.3. Электрический ток в газе. Процессы ионизации и рекомбинации
- •7.3.1. Несамостоятельная и самостоятельная проводимость газов
- •7.3.2. Закон Пашена
- •7.3.3. Виды разрядов в газах
- •7.3.3.1. Тлеющий разряд
- •7.3.3.2. Искровой разряд
- •7.3.3.3. Коронный разряд
- •7.3.3.4. Дуговой разряд
- •7.4. Понятие о плазме. Плазменная частота. Дебаевская длина. Электропроводность плазмы
- •7.5. Электролиты. Электролиз. Законы электролиза
- •7.6. Электрохимические потенциалы
- •7.7. Электрический ток через электролиты. Закон Ома для электролитов
- •7.7.1. Применение электролиза в технике
- •Лекция 8. Электроны в кристаллах
- •8.1. Квантовая теория электропроводности металлов. Уровень Ферми. Элементы зонной теории кристаллов
- •8.2. Явление сверхпроводимости с точки зрения теории Ферми-Дирака
- •8.3. Электропроводность полупроводников. Понятие о дырочной проводимости. Собственные и примесные полупроводники. Понятие о p-n – переходе
- •8.3.1. Собственная проводимость полупроводников
- •8.3.2. Примесные полупроводники
- •8.4. Электромагнитные явления на границе раздела сред
- •8.4.1. P-n – переход
- •8.4.2. Фотопроводимость полупроводников
- •8.4.3. Люминесценция вещества
- •8.4.4. Термоэлектрические явления. Закон Вольта
- •8.4.5. Эффект Пельтье
- •8.4.6. Явление Зеебека
- •8.4.7. Явление Томсона
- •Заключение
- •Библиографический список Основной
- •Дополнительный
4.1. Энергия взаимодействия электрических зарядов
Силы взаимодействия электрических зарядов консервативны, следовательно, система электрических зарядов обладает потенциальной энергией.
Пусть даны два точечных неподвижных заряда q1 и q2, находящиеся на расстоянии r друг от друга. Каждый из зарядов в поле другого заряда обладает потенциальной энергией
;
,
(4.1)
где 1,2 и 2,1 – соответственно потенциалы, создаваемые зарядом q2 в точке нахождения заряда q1 и зарядом q1 в точке нахождения заряда q2.
Так как
,
а
,
(4.2)
то
,
а
. (4.3)
Следовательно,
.
(4.4)
Для того чтобы в уравнение энергии системы оба заряда входили симметрично, выражение (4.4) можно записать в виде
.
(4.5)
Добавляя к системе зарядов последовательно заряды q3, q4 и т.д., можно убедиться, что в случае N зарядов потенциальная энергия системы
, (4.6)
где i – потенциал создаваемый в точке нахождения qi всеми зарядами, кроме i - го.
При непрерывном распределении зарядов в элементарном объеме dV находится заряд dq = dV. Для определения энергии взаимодействия заряда dq можно применить формулу (4.6), перейдя в ней от суммы к интегралу:
,
(4.7)
где – потенциал в точке элемента объема dV.
Надо отметить, что между формулами (4.6) и (4.7) существует принципиальное различие. Формула (4.6) учитывает только энергию взаимодействия между точечными зарядами, но не учитывает энергии взаимодействия элементов заряда каждого из точечных зарядов между собой (собственную энергию точечного заряда). Формула (4.7) учитывает как энергию взаимодействия между точечными зарядами, так и собственную энергию этих зарядов. При расчете энергии взаимодействия точечных зарядов она сводится к интегралам по объему Vi точечных зарядов:
,
(4.8)
где i - потенциал в любой точке объема i-го точечного заряда;
i = i + iс, (4.9)
где i - потенциал, созданный другими точечными зарядами в этой же точке;
iс – потенциал, созданный частями i-го точечного заряда в данной точке.
Так как точечные заряды можно представить сферически симметричными, то
(4.10)
где W определяется по формуле (4.6).
Значение собственной энергии зарядов зависит от законов распределения зарядов и от величины зарядов. Например, при равномерном сферическом распределении зарядов с поверхностной плотностью
.
Следовательно,
.
(4.11)
Из формулы (4.11) видно, что при R0 величина Wс. Это означает, что собственная энергия точечного заряда равна бесконечности. Это приводит к серьезным недостаткам понятия "точечный заряд".
Таким образом, формулу (4.6) можно применять для анализа взаимодействия точечных зарядов, поскольку она не содержит их собственной энергии. Формула (4.7) для непрерывного распределения заряда учитывает всю энергию взаимодействия, поэтому является более общей.
При
наличии поверхностных зарядов вид
формулы (4.7) несколько изменяется.
Подынтегральное выражение этой формулы
равно
и имеет смысл потенциальной энергии,
которой обладает элемент заряда dq,
находясь в точке с потенциалом.
Эта потенциальная энергия не зависит
от того, является ли dq элементом объемного
или поверхностного заряда. Поэтому для
поверхностного распределения dq = dS.
Следовательно, для энергии поля
поверхностных зарядов
.
(4.12)