Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
elektronika.docx
Скачиваний:
235
Добавлен:
11.04.2015
Размер:
3.64 Mб
Скачать

1)История развития.Роль электроники в автом.Транспорте.

Электроника — наука о взаимодействии заряженных частиц с электромагнитными полями и методах создания электронных приборов и устройств, работа которых основана на прохождении электрического тока в твёрдом теле, вакууме и газах.

Этапы развития электроники:

1 этап.К первому этапу относится изобретение в 1809 году русским инженером Ладыгинымлампы накаливания.

2 этап. Второй этап развития электроники начался с 1904 г. когда английский ученый Джон Флеминг сконструировал электровакуумный диод.

В 1907 г. американский инженерЛи де Форест установил, что поместив между катодом (К) и анодом (А) металлическую сетку (с) и подавая на нее напряжение Vc можно управлять анодным током Ia практически без инерционно и с малой затратой энергии. Так появилась первая электронная усилительная лампа — триод

3 этап. Третий период развития электроники — это период создания и внедрения дискретных полупроводниковых приборов.

23 декабря 1947 г. сотрудниками лаборатории «Белл Телефон» — Бардиным и Браттейном, под руководством Шокли продемонстрирован работающий точечный биполярный транзистор. В 1956 г. удостоены Нобелевской премии.

4 этап. В 1960 году Роберт Нойс из фирмы Fairchild предложил и запатентовал идею монолитной интегральной схемы (Патент США 2981877) и применив планарную технологию изготовил первые кремниевые монолитные интегральные схемы.

Электроника в автомобиле играет роль центра, управляющего коррекцией работы многих узлов и частей транспортного средства. Данный механизм приводит в порядок действие двигателя и систему навесных механизмов. Это касается и системы кондиционирования, и климат-контроля автомобиля. Также стоит сказать, что электронные устройства транспортного средства упорядочивают функционирование всех электрических механизмов в данном автомобиле.

2)Электронно-дырочный p-n переход и его основные свойства.

Работа большинства полупроводниковых приборов основана на использовании p-n-перехода. Физически это приконтактный слой толщиною в несколько микрон разновесных кристаллов.

На границе раздела возникает внутреннее электрическое поле p-n перехода, которое будет тормозящим для основных носителей заряда и будет их отбрасывать от границы раздела.

Приложим внешнее напряжение плюсом к p-области. Внешнее электрическое поле направлено навстречу внутреннему полю p-n перехода, что приводит к уменьшению потенциального барьера. Основные носители зарядов легко смогут преодолеть потенциальный барьер, и поэтому через p-n переход будет протекать сравнительно большой ток, вызванный основными носителями заряда.

Такое включение p-n перехода называется прямым, и ток через p-n переход, вызванный основными носителями заряда, также называется прямым током. Считается, что при прямом включении p-n переход открыт. Если подключить внешнее напряжение минусом на p-область, а плюсом на n-область, то возникает внешнее электрическое поле, линии напряжённости которого совпадают с внутренним полем p-n перехода. В результате это приведёт к увеличению потенциального барьера и ширины p-n перехода. Основные носители заряда не смогут преодолеть p-n переход, и считается, что p-n переход закрыт. Оба поля – и внутреннее и внешнее - являются ускоряющими для неосновных носителей заряда, поэтому неосновные носители заряда будут проходить через p-n переход, образуя очень маленький ток, который называется обратным током. Такое включение p-n перехода также называется обратным.

Свойства p-n перехода.

К основным свойствам p-n перехода относятся:

- свойство односторонней проводимости;

- температурные свойства p-n перехода;

- частотные свойства p-n перехода;

- пробой p-n перехода.

Свойство односторонней проводимости p-n

Вольтамперной характеристикой (ВАХ) называется графически выраженная зависимость величины протекающего через p-n переход тока от величины приложенного напряжения. I=f(U).

Температурное свойство p-n перехода показывает, как изменяется

работа p-n перехода при изменении температуры

Частотные свойства p-n перехода показывают, как работает p-n переход при подаче на него переменного напряжения высокой частоты. Частотные свойства p-n перехода определяются двумя видами ёмкости перехода:

- ёмкость, обусловленная неподвижными зарядами ионов донорной и акцепторной примеси. Она называется зарядной, или барьерной ёмкостью;

- диффузионная ёмкость, обусловленная диффузией подвижных носителей заряда через p-n переход при прямом включении.

Вывод: чем меньше величина ёмкости p-n перехода, тем на более высоких частотах он может работать.

Явление сильного увеличения обратного тока при определённом обратном напряжении называется электрическим пробоем p-n перехода.

Различают электрический (лавинный, туннельный) и тепловой пробои.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]