Скачиваний:
46
Добавлен:
11.04.2015
Размер:
303.1 Кб
Скачать

2.2.2. Теплота (температура).

Теплота– совокупность различных видов внутренней энергии вещества (энергия колебательного движения атомов и молекул, энергия межатомных и межмолекулярных связей и др., за исключением внутриатомной и ядерной энергии).

Температура– параметр, отражающий среднюю кинетическую скорость колебательного движения атомов и молекул в веществе.

От температуры окружающей среды зависит температура организмов, а также скорость химических реакций, составляющих обмен веществ. Поэтому границы существования жизни - это температуры, при которых возможно образование и нормальное функционирование белков (в среднем от 0 до +50 оС). Однако некоторые организмы, обладая специализированными ферментными системами, могут существовать при температуре тела, выходящей за указанные пределы.

Виды организмов, предпочитающие холод образуют экологическую группу криофилов. Они могут сохранять активность при температуре клеток до (–8)…(–10оС), когда жидкая фаза их тела находится в переохлажденном состоянии (бактерии, грибы, мхи, лишайники и др., обитающие в Арктике, высокогорьях и т.п. местах).

Виды организмов, приспособившиеся к существованию в условиях высоких температур, относятся к группе термофилов. Они могут активно существовать при температуре среды до

90…98оС(личинки насекомых, организмы, живущие на поверхности почвы и в разлагающихся органических остатках, а также ряд микроорганизмов).

Температурные границы существования жизни для многих видов расширяются в их латентномсостоянии (скрытый период жизни). Так, споры некоторых бактерий в течение нескольких минут выдерживают нагревание до +180оС, а обезвоженные семена, пыльца и споры некоторых растений выдерживали температуру (–271,16оС) с последующим возвращением к жизни. В этом случае все молекулы находятся в состоянии практически полного покоя и никакие биохимические реакции невозможны. Такое состояние организма (приостановка всех жизненных процессов) называетсяанабиоз. Из него к нормальной жизнедеятельности организм может возвратиться только при отсутствии нарушений структуры макромолекул в его клетках.

Нестабильность температуры окружающей среды создает существенную экологическую проблему. Так, понижение температуры вызывает опасность такого замедления обмена веществ, при котором невозможно проявление основных жизнедеятельных функций, а повышение температуры может нарушить нормальную жизнедеятельность организма задолго до теплового разрушения ферментов и белков из-за резкого возрастания потребности в пище и кислороде, которые не всегда удовлетворяются.

В ходе эволюции у организмов выработались различные механизмы регулирования обмена веществ при изменении температуры окружающей среды, основные из них следующие:

  • биохимическая и физиологическая перестройка систем жизнеобеспечения (изменение набора, концентрации и активности ферментов, обезвоживание, понижение точки замерзания растворов тела и др.);

  • поддержание температуры тела на более стабильном уровне (по сравнению с температурой окружающей среды), что обеспечивает практически постоянную скорость биохимических реакций. Эта стабильность обусловлена процессами выделения тепла как побочного продукта биохимических реакций и теплоотдачи в окружающую среду.

Организмы с низким уровнем обмена веществ и отсутствием приспособленности к сохранению образующегося тепла имеют температуру тела, а, следовательно, и жизненную активность, зависящую от температуры окружающей среды. Такие организмы называют пойкилотермными(от греч.poikilos– разнообразный) – растения, беспозвоночные животные и др.

Организмы, способные поддерживать постоянную оптимальную температуру тела независимо от изменения её в окружающей среде, называются гомойотермными(от греч.gomoios– одинаковый). Это только 2 высших класса позвоночных – птицы и млекопитающие. Частный случай гомойотермии –гетеротермияхарактерен для животных, впадающих в неблагоприятный период года в спячку или оцепенение, при этом обмен веществ замедляется (суслики, сурки, ежи, летучие мыши и др.).

У пойкилотермных организмов после холодового угнетения нормальный обмен веществ восстанавливается при температуре, называемой температурным порогом развитияи протекает тем интенсивнее, чем выше температура окружающей среды, что ускоряет прохождение всех стадий и всего жизненного цикла организма.

Таким образом, для осуществления генетической программы развития таким организмам необходимо получить из окружающей среды определенное количество теплоты. Эта теплота измеряется суммой эффективных температур.Эффективная температура– положительная разность между температурой окружающей среды и температурным порогом развития организма. Для каждого вида эффективная температура имеет верхние пределы.

Сумма эффективных температур рассчитывается по формуле

Э.Т .= (tО.С.tП.Р.n

где: Э.Т.– сумма эффективных температур,оС;

tО.С.– температура окружающей среды,оС;

tП.Р.– температурный порог развития,оС;

n– число часов или дней сtО.С. >tП..Р.

Сумма эффективных температур, которая необходима для протекания жизненного цикла, ограничивает географическое распространение видов.

Так как наземная среда обитания имеет большой диапазон колебаний температуры, организмы выработали различные адаптационные механизмы жизнедеятельности в ней.

Так, у растений изменяется химический состав растворов, скорость биохимических реакций, способность поглощать или отражать солнечный свет и другие характеристики.

В отличие от растений, животные, обладающие мышцами, производят гораздо больше собственного внутреннего тепла, что определяет следующие основные пути их температурных адаптаций:

  • химическое терморегулирование – активное увеличение теплопродукции в ответ на понижение температуры окружающей среды;

  • физическая терморегуляция – изменение уровня теплоотдачи, способность удерживать тепло или, наоборот, рассеивать его избыток. Это обусловлено особенностями анатомии и физиологии животных (волосяной и перьевой покровы, распределение жировых запасов, наличие испарительной теплоотдачи и т.п.);

  • поведение организмов – перемещение в пространстве, смена позы и т.п.

Основные способы терморегуляции пойкилотермных организмов (животных) – поведенческие (перемена позы, активный поиск благоприятных микроклиматических условий, смена мест обитания, создание нужного микроклимата за счет, например, рытья нор, сооружения гнёзд и др.).

Эффективным механизмом терморегулирования является испарение воды путем потоотделения через кожный покров или через влажные слизистые оболочки полости рта и верхних дыхательных путей. Так как теплота парообразования воды велика (2,3·106Дж/кг), таким путем из организма выводится много избыточного тепла. Так, человек в жару за день может выделить до 10…12лпота, при испарении которого в окружающую среду рассеивается ~ 2,5·107Джтепловой энергии, что соответствует затрачиваемой мощности ~ 580Вт.

Поддержание температурного баланса организма теплокровных животных зависит также от отношения поверхности тела к его объему. Так, согласно правилу Бергмана из двух близких видов теплокровных более крупный обитает в холодном, а более мелкий в теплом климате; а в соответствии с правилом Аллена относительные размеры конечностей и других выступающих частей тела (хвостов, ушей, клювов) увеличиваются от высоких широт к низким.

Причиной этих изменений являются зависимости теплопродуцирования от массы организма, а теплоотдачи в окружающую среду от поверхности тела.

Терморегуляция при общем высоком уровне окислительных процессов в организме позволяет гомойотермным животным поддерживать свой тепловой баланс (практически постоянную температуру) на фоне широкого диапазона колебаний температуры окружающей среды.

Опираясь на вышеизложенное, можно заключить, что каждая из рассмотренных 2-х групп организмов в аспекте теплового фактора имеет свои экологические выгоды.

Соседние файлы в папке экология