Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ЛекНас.doc
Скачиваний:
112
Добавлен:
11.04.2015
Размер:
2.34 Mб
Скачать

2.7. Растворонасосы

Растворонасосы (рис.13)применяются для подачи текучих строительных растворов. Подача – до 5 м3/ч, напор – 70 - 150 м.

Рис. 13. Растворонасос: 1- - бункер; 2 - всасывающий клапан; 3 - плунжер; 4 - цилиндр; 5 – предохранительный клапан; 6 - нагнетательный клапан; 7 - воздушный колпак; 8 - перепускной клапан; 9 - резиновая диафрагма; 10 - рабочая полость

Конструкция насоса представляет собой комбинацию плунжерного и диафрагмового насосов.

Раствор из бункера 1 поступает через всасывающий клапан 2 в рабочую полость 10. Плунжер 3 перемещается в герметичном цилиндре 4, заполненном водой. Вода заставляет прогибаться резиновую диафрагму 9 и раствор выдавливается через напорный клапан 6 в воздушный колпак 7 и далее - в напорную трубу.

Если напорный трубопровод забьется, то во избежание повреждения диафрагмы при ходе плунжера влево срабатывает предохранительное устройство 5 и сбрасывает давление в цилиндре. Для опорожнения напорной линии служит перепускной клапан 8.

    1. Бетононасосы

Существующие конструкции бетононасосов (рис.14)позволяют подавать бетонную массу на высоту до 40 - 50 м; применяют их при большом объеме бетонных работ.

В поршневых бетононасосах (рис.14) осуществляется принудительное открытие и закрытие клапанов с помощью устройства, связанного с механизмом возвратно–поступа-тельного движения поршня.

Рис. 14. Схема бетононасоса в положении нагнетания (а) и в фазе всасывания (б): 1- цилиндр; 2- поршень; 3- резиновое уплотнение; 4- всасывающий клапан; 5- побудитель; 6- мешалка; 7- бункер; 8- нагнетательный клапан; 9- напорная труба

При ходе поршня вправо всасывающий и нагнетательный клапаны 4 и 8 повернуты в вертикальное положение (рис.14,б); бетонная масса попадает в цилиндр.

При ходе поршня влево клапаны находятся в положении, показанном на рис.14,а; бетонная масса выдавливается в напорный трубопровод.

Клапаны защищены специальными резиновыми уплотнительными кольцами, которые по мере изнашивания быстро могут быть заменены новыми. Для охлаждения и защиты поршня может подаваться вода. Бетононасосы применяют для подачи достаточно пластичных бетонных смесей.

3. Центробежные насосы

В центробежных насосах (рис. 15) вода входит из всасывающего патрубка в рабочее колесо параллельно оси вращения и затем попадает на лопасти, при вращении колеса вода приобретает дополнительную энергию и с большой скоростью выбрасывается в спиральный корпус, заканчивающийся расширением (диффузором), в котором большая часть кинетической энергии потока преобразуется в потенциальную энергию давления, и выходит в напорный патрубок.

В системах водоснабжения и водоотведения более 95% всех насосов – центробежные. Их производительность – от нескольких десятков литров в час до десятков тысяч кубических метров в час; напоры – до 100-120 м на одном рабочем колесе.

3.1. Основное уравнение центробежного насоса

Примем, что траектория частиц воды внутри рабочего колеса совпадает с очертанием лопасти (рис.16). На выходе из вращающегося колеса суммарная скорость С2 складывается векторно из скорости V2 (вдоль лопасти) и тангенциальной скорости U2. Аналогичный параллелограмм скоростей можно наблюдать на входе в колесо, где скорости обозначены С1, V1, U1.

Для потока воды в колесе масса воды, кг где t – время. Импульс силы равен произведению массы на скорость, или и , а моменты импульса равны I2L2 и I1L1,где L2, L1 – плечи сил; .

Согласно известной теореме, изменение момента импульса силы за время t равно приложенному моменту:

или ,

. (2)

Произведение момента на окружную скорость ω равно приложенной мощности на валу: .

В то же время мощность выражается через расход и напор: N = Q·ρ·g·H.

Умножив обе части уравнения (2) на ω, получим

N = Q·ρ·g·H = (3)

Из параллелограмма скоростей следует, что произведение равно проекции скорости С2 на U2: ; аналогично. Тангенциальная скорость U2 = ω·R и U1 = ω·r.

Выражение (3) приобретает вид

.

Это основное уравнение центробежного насоса, уравнение Эйлера. В конструкциях рабочих колес угол β1 подбирают таким, чтобы равнодействующая С1 была направлена радиально, тогда проекция С1u=0 и уравнение упрощается

. (4)

Расход воды через рабочее колесо можно выразить как произведение площади боковой поверхности колеса на радиальную скорость W2:

где ,

здесь D – диаметр наружной окружности колеса;

в – ширина выходной щели колеса;

m - число лопастей;

δ - толщина лопастей.

Из параллелограмма скоростей следует

W2 = (U2 – C2U)tg.

Из уравнения Эйлера (4):

,.

Преобразование этого уравнения дает выражение

. (5)

С помощью этой зависимости при известных геометрических размерах колеса и заданном числе оборотовn1, U = Dn1, можно построить теоретическую характеристику центробежного насоса в координатах Q – H: при Q = 0 ; при Н = 0 .

Реальные характеристики центробежных насосов существенно отличаются от теоретических из-за ряда факторов (рис.17).

В реальных колесах ограниченное число лопастей, поэтому траектории не всех частиц совпадают с формой лопаток, за счет этого теоретическая характеристика понижается (кривая 1 рис.17).

В колесе происходят гидравлические потери за счет трения hг, пропорциональные квадрату скорости (и квадрату расхода), что выражается кривой 2. Конструкция рабочего колеса рассчитывается на определенный расход Qp и скорость Vp, при отклонении от которых возникают так называемые потери на удар hу, пропорциональные величине (кривая 3). Кроме того, в насосе из-за зазоров и неплотностей часть жидкости перетекает из выходной полости во входную и подача насоса уменьшается. В результате всех этих потерь реальная характеристика 4 проходит существенно ниже теоретической.