Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
информатика.docx
Скачиваний:
19
Добавлен:
11.04.2015
Размер:
96.77 Кб
Скачать

4. Четвертое поколение эвм: 1980-1990-е годы

Революционным событием в развитии компьютерных технологий третьего поколения машин было создание больших и сверхбольших интегральных схем (Large Scale Integration - LSI и Very Large Scale Integration - VLSI), микропроцессора (1969 г.) и персонального компьютера. Начиная с 1980 года практически все ЭВМ стали создаваться на основе микропроцессоров. Самым востребованным компьютером стал персональный.

Логические интегральные схемы в компьютерах стали создаваться на основе униполярных полевых CMOS-транзисторов с непосредственными связями, работающими с меньшими амплитудами электрических напряжений (единицы вольт), потребляющими меньше мощности, нежели биполярные, и тем самым позволяющими реализовать более прогрессивные нанотехнологии (в те годы - масштаба единиц микрон).

Оперативная память стала строиться не на ферритовых сердечниках, а также на интегральных CMOS-транзисторных схемах, причем непосредственно запоминающим элементом в них служила паразитная емкость между электродами (затвором и истоком) этих транзисторов.

Первый персональный компьютер создали в апреле 1976 года два друга, Стив Джобе (1955 г. р.) - сотрудник фирмы Atari, и Стефан Возняк (1950 г. р.), работавший на фирме Hewlett-Packard. На базе интегрального 8-битного контроллера жестко запаянной схемы популярной электронной игры, работая вечерами в автомобильном гараже, они сделали простенький программируемый на языке Бейсик игровой компьютер "Apple", имевший бешеный успех. В начале 1977 года была зарегистрирована Apple Сотр., и началось производство первого в мире персонального компьютера Apple.

5. Пятое поколение эвм: 1990-настоящее время

Особенности архитектуры современного поколения компьютеров подробно рассматриваются в данном курсе.

Кратко основную концепцию ЭВМ пятого поколения можно сформулировать следующим образом:

1. Компьютеры на сверхсложных микропроцессорах с параллельно-векторной структурой, одновременно выполняющих десятки последовательных инструкций программы.

2. Компьютеры с многими сотнями параллельно работающих процессоров, позволяющих строить системы обработки данных и знаний, эффективные сетевые компьютерные системы.

Шестое и последующие поколения ЭВМ

Электронные и оптоэлектронные компьютеры с массовым параллелизмом, нейронной структурой, с распределенной сетью большого числа (десятки тысяч) микропроцессоров, моделирующих архитектуру нейронных биологических систем.

Заключение

Все этапы развития ЭВМ принято условно делить на поколения.

Первое поколение создавалось на основе вакуумных электроламп, машина управлялась с пульта и перфокарт с использованием машинных кодов. Эти ЭВМ размещались в нескольких больших металлических шкафах, занимавших целые залы.

Втрое поколение появилось в 60-е годы 20 века. Элементы ЭВМ выполнялись на основе полупроводниковых транзисторов. Эти машины обрабатывали информацию под управлением программ на языке Ассемблер. Ввод данных и программ осуществлялся с перфокарт и перфолент.

Третье поколение выполнялось на микросхемах, содержавших на одной пластинке сотни или тысячи транзисторов. Пример машины третьего поколения - ЕС ЭВМ. Управление работой этих машин происходило с алфавитно-цифровых терминалов. Для управления использовались языки высокого уровня и Ассемблер. Данные и программы вводились как с терминала, так и с перфокарт и перфолент.

Четвертое поколение было создано на основе больших интегральных схем (БИС). Наиболее яркие представители четвертого поколения ЭВМ - персональные компьютеры (ПК). Персональной называется универсальная однопользовательская микроЭВМ. Связь с пользователем осуществлялась посредством цветного графического дисплея с использованием языков высокого уровня.

Пятое поколение создано на основе сверхбольших интегральных схем (СБИС), которые отличаются колоссальной плотностью размещения логических элементов на кристалле.

Предполагается, что в будущем широко распространится ввод информации в ЭВМ с голоса, общения с машиной на естественном языке, машинное зрение, машинное осязание, создание интеллектуальных роботов и робототехнических устройств.

9. Классификация ЭВМ по различным признакам.

Классификация ЭВМ по поколениям

Первые электронные вычислительные машины (ЭВМ) появились после Второй Мировой войны, и они были очень далеки от современных компьютеров. В те годы никто и не думал о том, что когда-нибудь компьютер сможет помочь человеку в интеллектуальной деятельности. Первые ЭВМ, основанные на электронных лампах, были крупногабаритными, «медленными», ненадежными, расходовали много энергии и программировались в машинных кодах.

Второе поколение электронно-вычислительных машин существовало в период с конца 1950-х до начала 1960-х годов. ЭВМ стали производиться на полупроводниковых элементах. Технические характеристики вышли на новый уровень, программирование для них велось в алгоритмических языках.

К началу шестидесятых годов в мире уже работали тысячи электронно-вычислительных машин. ЭВМ стали производиться на интегральных схемах. Уменьшились размеры, повысилась производительность и надежность машин.

К четвертому поколению ЭВМ относятся персональные компьютеры на микропроцессорах. В конце 1970 года был выпущен в продажу микропроцессор Intel - 4004. Вслед за этим четырехбитным, появились восьмибитные модели 8008 и 8080, которые до конца семидесятых стали стандартом компьютерной индустрии. Вначале эти процессоры использовались только электронщиками-любителями и в различных специальных устройствах, но с 1975 года, на основе Intel - 8080, стали серийно производиться первые персональные компьютеры. Отличительные черты компьютеров четвертого поколения - высокая мощность, производительность, надежность и относительная дешевизна.

О пятом поколении ЭВМ стали говорить с середины 1980-х годов. Компьютеры стали проникать во все сферы жизни человека.

Современное человеческое общество живет в период, который характеризуется небывалым ростом информационных потоков. Это относится как к экономике, так и к социальной сфере. Применение современных электронных вычислительных машин дает возможность переложить трудоемкие операции на автоматические или автоматизированные устройства, которые могут работать со скоростью, превышающей скорость обработки информации человеком в миллионы раз. В наши дни уже невозможно представить решение сложных вычислительных задач и выполнение операций, без помощи «электронного мозга», называемого компьютером, или ЭВМ. Классификация компьютеров по другим признакам

Компьютер- это электронный прибор, предназначенный для автоматизации создания, хранения, обработки и транспортировки данных.

Компьютеры предназначены для выполнения самой разнообразной работы и соответственно делятся на разные классы. Существует достаточно систем классификации компьютеров. Классификация по назначению - один из наиболее ранних методов классификации. Он связан с тем, как компьютер применяется. По этому принципу различают:

· большие ЭВМ (мэйнфреймы);

· мини - ЭВМ;

· микро-ЭВМ;

· персональные компьютеры.

Микрокомпьютеры - это компьютеры, в которых центральный процессор выполнен в виде микропроцессора.

Персональные компьютеры (ПК) - это микрокомпьютеры универсального назначения, рассчитанные на одного пользователя и управляемые одним человеком. Персональный компьютер относится к классу микро - ЭВМ и является машиной индивидуального пользования. Это общедоступный и универсальный инструмент, многократно повышающий производительность интеллектуального труда. Существуют следующие категории персональных компьютеров:

· Consumer PC (массовый ПК);

· Office PC (деловой ПК);

· Mobile PC (портативный ПК);

· Workstation PC (рабочая станция);

· Entertainment PC (развлекательный ПК).

Consumer PC (массовый ПК) - практически это базовый компьютер. Он предназначен для массового потребителя, надежен и имеет простейшую конфигурацию.

Office PC (деловой ПК) - это компьютер среднего класса, но уже для работы в офисе. Применяются для решения задач научно-технического и экономического характера, а также и для обучения. Они размещаются на рабочих местах потребителей: на предприятиях, в учреждениях, в магазинах и т.д.

Mobile PC (портативный ПК). К этим машинам предъявляются особые требования. В данном случае не требуется сверхвысокой вычислительной мощности и развитых сетевых возможностей, зато очень важны низкий вес и возможность длительной работы от батарей.

Workstation PC (рабочая станция) - это настольная система высокой производительности, в которой высокое быстродействие сочетается с большим объемом оперативной и внешней памяти, высокопроизводительными внутренними магистралями, высококачественной и быстродействующей графической подсистемой и разнообразными устройствами ввода / вывода.

Entertainment PC (развлекательный ПК) - это своеобразная «домашняя рабочая станция», предназначенная для работы с приложениями мультимедиа, трехмерными играми и для прочих нужд домашнего пользователя. Этот компьютер способен заменить музыкальный центр, телевизор, DVD-плеер и др.

Мэйнфреймы предназначены для решения широкого класса научно-технических задач и являются сложными и дорогими машинами. Их целесообразно применять в больших системах при наличии не менее 200 - 300 рабочих мест.

Суперкомпьютеры - это очень мощные компьютеры с производительностью свыше 100 мегафлопов. Они называются сверхбыстродействующими. Эти машины представляют собой многопроцессорные и (или) многомашинные комплексы, работающие на общую память и общее поле внешних устройств.

Мини-ЭВМ применяют для управления производственными процессами. Тот же компьютер может сочетать управление производством с другими задачами. Для организации работы с мини - ЭВМ тоже требуется специальный вычислительный центр. [2]

Классификация ЭВМ по принципу действия. По принципу действия вычислительные машины делятся на три больших класса: аналоговые (АВМ), цифровые (ЦВМ) и гибридные (ГВМ). Критерием деления вычислительных машин на эти классы является форма представления информации, с которой они работают.

Две формы представления информации в машинах: 1) аналоговая; 2) цифровая импульсная

Цифровые вычислительные машины (ЦВМ) дискретного действия работают с информацией, представленной в дискретной, точнее в цифровой, форме.

Аналоговые вычислительные машины (АВМ) непрерывного действия работают с информацией, представленной в непрерывной (аналоговой) форме, т.е. в виде непрерывного ряда значений какой-либо физической величины. Аналоговые вычислительные машины просты и удобны в эксплуатации; программирование задач для решения на них, как правило, нетрудоемкое; скорость решения задач изменяется по желанию оператора и может быть сделана сколь угодно высокой (больше, чем у ЦВМ). Но точность решения задач очень низкая.

Гибридные вычислительные машины (ГВМ) комбинированного действия работают с информацией, представленной и в цифровой, и в аналоговой форме; они совмещают в себе достоинства АВМ и ЦВМ. ГВМ целесообразно использовать для решения задач управления сложными быстродействующими техническими комплексами.

Наиболее широкое применение получили ЦВМ с электрическим представлением дискретной информации - электронные цифровые вычислительные машины, которые обычно называют просто электронными вычислительными машинами (ЭВМ) или компьютерами, без упоминания об их цифровом характере.

Классификация ЭВМ по уровню специализации: универсальные и специализированные. Универсальные компьютеры предназначены для решения широкого класса задач как научно-технического, так и экономического характера. Такие компьютеры, как правило, обладают развитой системой команд. Они имеют многоуровневую систему прерывания, динамическую организацию памяти и позволяют работать в различных пакетах: пакетном, разделения времени, в реальном масштабе времени, диалоговом и т.д. На базе универсальных компьютеров можно собирать вычислительные системы произвольного состава. Состав компьютерной системы называется конфигурацией.

Специализированные компьютеры предназначены для решения конкретного круга задач. К таким компьютерам относятся, например, бортовые компьютеры автомобилей, судов, самолетов, космических аппаратов. Специализированные мини-ЭВМ, ориентированные на работу с графикой, называют графическими станциями. Их используют при подготовке кинофильмов и видеофильмов, а также рекламной продукции.

Классификация компьютерных систем

В настоящее время накоплен большой практический опыт в разработке и использовании компьютерных (вычислительных) систем самого разнообразного применения. Эти системы очень сильно отличаются друг от друга своими возможностями и характеристиками.

По назначению ВС делят на универсальные, проблемно-ориентированные и специализированные. Универсальные предназначаются для решения широкого класса задач. Проблемно-ориентированные используются для решения определенного круга задач в сравнительно узкой сфере. Специализированные ориентированы на решение узкого класса задач.

По типу ВС различаются на многомашинные и многопроцессорные. Многомашинные (ММС) появились исторически первыми. Уже при использовании ЭВМ первых поколений возникали задачи повышения производительности, надежности и достоверности вычислений. Многопроцессорные (МПС) строятся при комплексировании нескольких процессоров. В качестве общего ресурса они имеют общую оперативную память (ООП). Параллельная работа процессоров и использование ООП обеспечиваются под управлением единой общей операционной системы.

По типу ЭВМ или процессоров, используемых для построения ВС, различают однородные и неоднородные системы. Однородные предполагают комплексирование однотипных ЭВМ (процессоров), неоднородные - разнотипных [6, С. 15]. В однородных системах значительно упрощаются разработка и обслуживание технических и программных (в основном ОС) средств.

По степени территориальной разобщенности вычислительных модулей ВС делятся на системы совмещенного (сосредоточенного) и распределенного (разобщенного) типов. Обычно такое деление касается только ММС. Многопроцессорные системы относятся к системам совмещенного типа.

По методам управления элементами ВС различают централизованные, децентрализованные и со смешанным управлением.

По принципу закрепления вычислительных функций за отдельными ЭВМ (процессорами) различают системы с жестким и плавающим закреплением функций. В зависимости от типа ВС следует решать задачи статического или динамического размещения программных модулей и массивов данных, обеспечивая необходимую гибкость системы и надежность ее функционирования.

По режиму работы ВС различают системы, работающие в оперативном и неоперативном временных режимах. Первые, как правило, используют режим реального масштаба времени. Этот режим характеризуется жесткими ограничениями на время решения задач в системе и предполагает высокую степень автоматизации процедур ввода-вывода и обработки данных.

10. Структура и принципы функционирования ЭВМ

Более чем за полвека развития вычислительных средств прогресс в аппаратной реализации ЭВМ и их технических характеристик превзошел все прогнозы, и пока не заметно снижение его темпов. Несмотря на то, что современные ЭВМ внешне не имеют ничего общего с первыми моделями, основополагающие идеи, заложенные в них и связанные с понятием алгоритма, разработанным Аланом Тьюрингом, а также архитектурной реализацией, предложенной Джоном фон Нейманом, пока не претерпели коренных изменений (за исключением систем параллельной обработки информации).

Любая ЭВМ неймановской архитектуры содержит следующие основные устройства:

арифметико-логическое устройство (АЛУ);

устройство управления (УУ)

запоминающее устройство (ЗУ);

устройства ввода-вывода (УВВ);

пульт управления (ПУ).

Процессор, или микропроцессор, является основным устройством ЭВМ. Он предназначен для выполнения вычислении по хранящейся в запоминающем устройстве программе и обеспечения общего управления ЭВМ. Быстродействие ЭВМ в значительной мере определяется скоростью работы процессора. Для ее увеличения процессор использует собственную намять небольшого объема, именуемую местной или сверхоперативной, что в некоторых случаях исключает необходимость обращения к запоминающему устройству ЭВМ.

Вычислительный процесс долженбыть предварительно представлен для ЭВМ в виде программы — последовательности инструкций (команд), записанных в порядке выполнения. В процессе выполнения программы ЭВМ выбирает очередную команду, расшифровывает ее, определяет, какие действия и над какими операндами следует выполнить. Эту функцию осуществляет УУ. Оно же помещает выбранные из ЗУ операнды в АЛУ, где они и обрабатываются. Само АЛУ работает под управлением УУ.

Обрабатываемые данные и выполняемая программа должны находиться в запоминающем устройстве — памяти ЭВМ, куда они вводятся через устройство ввода. Емкость памяти измеряется в величинах, кратных байту. Память представляет собой сложную структуру, построенную по иерархическому принципу, и включает в себя запоминающие устройства различных типов. Функционально она делится на две части: внутреннюю и внешнюю.

Внутренняя, или основная память— это запоминающее устройство, напрямую связанное с процессором и предназначенное для хранения выполняемых программ и данных, непосредственно участвующих в вычислениях. Обращение к внутренней памяти ЭВМ осуществляется с высоким быстродействием, но она имеет ограниченный объем, определяемый системой адресации машины.

Внутренняя память, в свою очередь, делится на оперативную (ОЗУ) и постоянную (ПЗУ) память. Оперативная память, по объему составляющая" большую часть внутренней памяти, служит для приема, хранения и выдачи информации. При выключении питания ЭВМ содержимое оперативной памяти в большинстве случаев теряется. Постоянная память обеспечивает хранение и выдачу информации. В отличие от содержимого оперативной памяти, содержимое постоянной заполняется при изготовлении ЭВМ и не может быть изменено в обычных условиях эксплуатации. В постоянной памяти хранятся часто используемые (универсальные) программы, и данные, к примеру, некоторые программы операционной системы, программы тестирования оборудования ЭВМ и др. При выключении питания содержимое постоянной памяти сохраняется.

Внешняя память (ВЗУ) предназначена для размещения больших объемов информации и обмена ею с оперативной памятью. Для построения внешней памяти используют энергонезависимые носители информации (диски и ленты), которые к тому же являются переносимыми. Емкость этой памяти практически не имеет ограничений, а для обращения к ней требуется больше времени, чем ко внутренней.

Внешние запоминающие устройства конструктивно отделены от центральных устройств ЭВМ (процессора и внутренней памяти), имеют собственное управление и выполняют запросы процессора без его непосредственного вмешательства. В качестве ВЗУ используют накопители на магнитных и оптических дисках, а также накопители на магнитных лентах.

ВЗУ по принципам функционирования разделяются на устройства прямого доступа (накопители на магнитных и оптических дисках) и устройства последовательного доступа (накопители на магнитных лентах). Устройства прямого доступа обладают большим быстродействием, поэтому они являются основными внешними запоминающими устройствами, постоянно используемыми в процессе функционирования ЭВМ. Устройства последовательного доступа используются в основном для резервирования информации.

Устройства ввода-вывода служат соответственно для ввода информации в ЭВМ и вывода из нее, а также для обеспечения общения пользователя с машиной. Процессы ввода-вывода протекают с использованием внутренней памяти ЭВМ. Иногда устройства ввода-вывода называют периферийными или внешними устройствами ЭВМ. К ним относятся, в частности, дисплеи (мониторы), клавиатура, манипуляторы типа «мышь», алфавитно-цифровые печатающие устройства (принтеры), графопостроители, сканеры и др. Для управления внешними устройствами (в том числе и ВЗУ) и согласования их с системным интерфейсом служат групповые устройства управления внешними устройствами, адаптеры или контроллеры.

Системный интерфейс— это конструктивная часть ЭВМ, предназначенная для взаимодействия ее устройств и обмена информацией между ними.

В больших, средних и супер-ЭВМ в качестве системного интерфейса используются сложные устройства, имеющие встроенные процессоры ввода-вывода, именуемые каналами. Такие устройства обеспечивают высокую скорость обмена данными между компонентами ЭВМ.

Отличительной особенностью малых ЭВМ является использование в качестве системного интерфейса системных шин. Различают ЭВМ с многошинной структурой и с общей шиной. В первых для обмена информацией между устройствами используются отдельные группы шин, во втором случае все устройства ЭВМ объединяются с помощью одной группы шин, в которую входят подмножества шин для передачи данных, адреса и управляющих сигналов. При такой организации системы шин обмен информацией между процессором, памятью и периферийными устройствами выполняется по единому правилу, что упрощает взаимодействие устройств машины.

Пульт управленияслужит для выполнения оператором ЭВМ или системным программистом системных операций в ходе управления вычислительным процессом. Кроме того, при техническом обслуживании ЭВМ за пультом управления работает инженерно-технический персонал. Пульт управления конструктивно часто выполняется вместе с центральным процессором.

11. Архитектура ПК. Функции основных устройств.

Архитектура персонального компьютера.

Обычно ПЭВМ включает три основных устройства: системный блок, клавиатуру и дисплей (монитор).

Однако для расширения функциональных возможностей ПЭВМ можно подключить различные дополнительные периферийные устройства, в частности: печатающие устройства (принтеры), накопители на магнитной ленте (стриммеры), различные манипуляторы (мышь, джойстик, трекбол, световое перо), устройства оптического считывания изображений (сканеры), графопостроители (плоттеры) и др.

Эти устройства подсоединяются к системному блоку с помощью кабелей через специальные гнезда (разъемы), которые размещаются обычно на задней стенке системного блока.

В некоторых моделях ПЭВМ при наличии свободных гнезд дополнительные устройства вставляются непосредственно в системный блок, например, модем для обмена информацией с другими ПЭВМ через телефонную связь или стриммер для хранения больших массивов информации на МЛ. Нортон П. Персональный компьютер фирмы IBM и опера-ционная система MS DOS: Пер. с англ. - М.: Радио и связь, 1991.

ПЭВМ, как правило, имеет модульную структуру. Все модули связаны с системной магистралью (шиной).

Системная магистраль. Она выполняется в виде совокупности шин, используемых для передачи данных, адресов и управляющих сигналов. Количество линий в адресно-информационной шине определяется разрядностью кодов адреса и данных, а количество линий в шине управления - числом управляющих сигналов, используемых в ПЭВМ.

Системный блок. Являясь главным в ПЭВМ, этот блок включает в свой состав: центральный микропроцессор, сопроцессор, модули оперативной и постоянной памяти, контролле-ры, накопители на магнитных дисках и другие функциональные модули. Набор модулей определяется типом ПЭВМ. Пользо-ватели по своему желанию могут изменять конфигурацию ПЭВМ, подключая дополнительные периферийные устройства.

В системный блок может быть встроено звуковое устройство, с помощью которого пользователю удобно следить за работой машины, вовремя обращать внимание на возникшие сбои в отдельных устройствах или на возникновение необычной ситуации при решении задачи на ПЭВМ. Гольц Г. Рабочие станции и информационные сети/ Пер. с англ. В.П. Нестерова; Под ред. П.В. Нестерова. - М.: Машиност-роение, 1990.

Со звуковым устройством часто связан таймер, позволяющий вести отсчет времени работы машины, фиксировать календар-ное время, указывать на окончание заданного промежутка времени при выполнении той или иной задачи.

Контроллеры (К). Эти устройства служат для управления внешними устройствами. Каждому ВУ соответствует - свой контроллер. Электронные модули-контроллеры реализуются на отдельных печатных платах, вставляемых внутрь системного блока. Такие платы часто называют адаптерами ВУ (от адаптировать - приспосабливать). После получения команды от микропроцессора контроллер функционирует автономно, освобождая микропроцессор от выполнения специфических функций, требуемых для того или другого конкретного ВУ.

Контроллер содержит регистры двух типов - регистр состояния (управления) и регистр данных. Эти регистры часто называют портами ввода-вывода. За каждым портом закреплен определенный номер - адрес порта. Через порты пользователь может управлять ВУ, используя команды ввода-вывода. Программа, выполняющая по обращению из основной выполняемой программы операции ввода-вывода для конкретного устройства или группы устройств ПЭВМ, входит в состав ядра операционной системы ПЭВМ. Вершинин ОД. Компьютер для школ, 1990.

Для ускорения обмена информацией между микропроцессором и внешними устройствами в ПЭВМ используется прямой доступ к памяти (ПДП). Контроллер ПДП, получив сигнал запроса от внешнего устройства, принимает управление обменом на себя и обеспечивает обмен данными с ОП, минуя центральный микропроцессор. В это время микропроцессор продолжает без прерывания выполнять текущую программу. Прямой доступ к памяти, с одной стороны, освобождает микропроцессор от непосредственного обмена между памятью и внешними устройствами, а с другой стороны, позволяет значительно быстрее по сравнению с режимом прерываний удовлетворять запросы на обмен.

Микропроцессор. Ядром любой ПЭВМ является центральный микропроцессор, который выполняет функции обработки информации и управления работой всех блоков ПЭВМ.

Конструктивно МП, как правило, выполнен на одном кристал-ле (на одной СБИС). В состав МП входят:

* центральное устройство управления;

* арифметико-логическое устройство;

* внутренняя регистровая память;

* КЭШ-память;

* схема формирования действительных адресов операндов для обращения к оперативной памяти;

* схемы управления системной шиной и др. Рассмотрим структуру и функционирование микропроцессора на примере разработанной фирмой Intel модели 486.

АЛУ выполняет логические операции, а также арифмети-ческие операции в двоичной системе счисления и в двоично-десятичном коде, причем арифметические операции над числами, представленными в форме с плавающей точкой, реализуются в специальном блоке. В некоторых конфигурациях с этой целью используется арифметический сопроцессор. Он имеет собственные регистры данных и управления, работает параллельно с центральным МП, обрабатывает данные с плавающей точкой.

Устройство управления микропроцессорного типа обеспечи-вает конвейерную обработку данных с помощью блока предварительной выборки (очереди команд).

Блок предварительной выборки команд и данных осуществляет заполнение очереди команд длиной 32 байта, причем выборка байтов из памяти выполняется в промежутках между магистральными циклами команд.

Производительность микропроцессора значительно повышается за счет буферизации часто используемых команд и данных во внутренней КЭШ-памяти размером (в данном случае) 8 Кбайт. При этом сокращается число обращений к внешней памяти. Внутренняя КЭШ-память имеет несколько режимов работы, что обеспечивает гибкость отладки и выполнения рабочих программ.

Блоки формирования адресов операндов (диспетчер памяти) состоит из блока сегментации и блока страничной адресации. Физический адрес ячейки памяти формируется последовательно: сначала в пределах сегмента, а затем в пределах страницы.

В МП i486 реализуются два режима работы - режим реальных адресов и многозадачный режим (защищенный режим).

В режиме реальных адресов выполняется расширенный набор команд над 32-разрядными операндами. В этом режиме МП i486 работает совместимо с МП i086. При работе МП i486 в режиме реальных адресов применяется относительная адресация.

В многозадачном (защищенном) режиме работы МП i486 применяется виртуальная адресация, соединяющая сегментацию памяти и страничную адресацию.

Сегментация памяти является средством управления пространством логических адресов. Сегментированная память представляет собой набор блоков, характеризуемых определенными атрибутами, такими, как расположение, размер, тип (стек, программа, данные), класс защиты памяти. В МП i486 каждой задаче доступно, до 16384 сегментов размером до 4 Гбайт каждый. Таким образом, каждая задача может использовать до 64 Тбайт виртуальной памяти.

Страничная адресация действует на более низком уровне. Каждый сегмент делится на страницы размером по 4 Кбайт, которые могут размещаться в любом месте памяти.

Сегментация полезна для организации в памяти локальных модулей. Это инструмент прикладного программиста, в то время как страничное распределение удобно системному программисту для эффективного использования физической памяти ПЭВМ.

В состав внутренней памяти МП входят доступные программисту функциональные регистры: регистры общего назначения, указатель команд, регистр флагов и регистры сегментов.

Восемь 32-разрядных регистров общего назначения используются для хранения данных и адресов. Они обеспечивают работу с данными разрядностью 1, 8, 16, 32 и 64 бита и адресами размером 16 и 32 бита. Каждый из таких регистров имеет свое имя, например ЕАХ или ESP.

32-разрядный указатель команд содержит смещение при определении адреса следующей команды.

32-разрядный регистр флагов указывает признаки результата выполнения команды.

Регистры сегментов содержат значения селекторов сегмен-тов, определяющих текущие адресуемые сегменты памяти.

Кроме вышеуказанных, регистровая память МП содержит регистры процессора обработки чисел с плавающей точкой, системные и некоторые другие регистры.

Устройство управления микропроцессора обеспечивает многозадачность. Многозадачность - способ организации работы ПЭВМ, при котором в ее памяти одновременно содержатся программы и данные для выполнения нескольких задач. В составе МП i486 имеются аппаратно-программные средства, позволяющие эффективно организовать многозадачный режим, в том числе системы прерывания и защиты памяти.

Система прерываний обрабатывает запросы на прерывание, как от внешних устройств, так и от внутренних блоков МП. Поступление запроса на прерывание от внутреннего блока МП свидетельствует о возникновении исключительной ситуации, например о переполнении разрядной сетки. Внешнее прерывание может быть связано с обслуживанием запросов от периферийных устройств. Требуя своевременного обслуживания, внешнее устройство посылает запрос прерывания микропроцессору. Микропроцессор в ответ приостанавливает нормальное выполнение текущей программы и переходит на обработку этого запроса, чтобы в дальнейшем выполнить определенные действия по вводу-выводу данных. После совершения таких действий происходит возврат к прерванной программе. МП i486 способен обрабатывать до 256 различных типов прерываний, причем первые 32 типа отведены для внутрисистемных целей и недоступны пользователю.

Зашита памяти от несанкционированного доступа в много-задачном режиме осуществляется с помощью системы привиле-гий, регулирующих доступ к тому или иному сегменту памяти в зависимости от уровня его защищенности и степени важности.

Защищенность определяется уровнем привилегии, требуемым для доступа к соответствующему сегменту. Уровни привилегии задаются номерами от 0 до 3. Наиболее защищенная область памяти - отведенная под ядро операционной системы - имеет уровень 0. При обращении программы к сегментам программ или данных в защищенном режиме происходит проверка уровня привилегии, и в случае, если этот уровень недостаточен, происходит прерывание.

Обмен информацией между блоками МП происходит через магистраль микропроцессора, включающую 32-разрядную шину адреса, 32-разрядную двунаправленную шину данных и шину управления.

Шина адреса используется для передачи адресов ячеек памяти и регистров для обмена информацией с внешними устройствами.

Шина данных обеспечивает передачу информации между МП, памятью и периферийными устройствами. По этой шине возможна пересылка 32, 16 и 8-разрядных данных. Шина двунаправленная, т.е. позволяет осуществлять пересылку данных, как в прямом, так и в обратном направлении.

Шина управления предназначена для передачи управляющих сигналов - управления памятью, управления обменом данных, запросов на прерывание и т.д.

Внутренняя память ПЭВМ состоит из оперативной памяти и постоянной памяти (ПП).

Оперативная память (ОП) ПЭВМ. Она построена на БИС или СБИС и является энергозависимой: при отключении питания информация в ОП теряется. В оперативной памяти хранятся исполняемые машинные программы, исходные и промежуточные данные и результаты. Емкость ОП в ПЭВМ измеряется в Килобайтах и Мегабайтах. Иногда адресное пространство увеличивается до Гигабайта. В наиболее распространенных конфигурациях ПЭВМ емкость ОП составляет 1-16 Мбайт.

В ОП обычно выделяется область, называемая стеком. Обращение к стековой памяти возможно только в той ячейке, которая адресуется указателем стека. Стек удобен при орга-низации прерываний и обращении к подпрограммам.

Постоянная память (ПП). Она является энергонезависимой, используется для хранения системных программ, в частности, так называемой базовой системы ввода-вывода (BIOS - Basic Input and Output System), вспомогательных программ и т.п. Программы, хранящиеся в ПП, предназначены для постоянного использования микропроцессором.

12. Принципы построения компьютеров, предложенные Дж. фон Нейманом

Джон фон Нейман (1903 – 1957) – американский математик, внесший большой вклад в создание первых ЭВМ и разработку методов их применения. Именно он заложил основы учения об архитектуре вычислительных машин, подключившись к созданию первой в мире ламповой ЭВМ ENIAC в 1944 году, когда ее конструкция была уже выбрана. В процессе работы, во время многочисленных дискуссий со своими коллегами Г.Голдстайном и А.Берксом, Джон фон Нейман высказал идею принципиально новой ЭВМ. В 1946 году ученые изложили свои принципы построения вычислительных машин в ставшей классической статье «Предварительное рассмотрение логической конструкции электронно-вычислительного устройства». С тех пор прошло более полувека, но выдвинутые в ней положения сохраняют свою актуальность и сегодня.

В статье убедительно обосновывается использование двоичной системы для представления чисел, в ведь ранее все вычислительные машины хранили обрабатываемые числа в десятичном виде. Авторы продемонстрировали преимущества двоичной системы для технической реализации, удобство и простоту выполнения в ней арифметических и логических операций. В дальнейшем ЭВМ стали обрабатывать и нечисловые виды информации – текстовую, графическую, звуковую и другие, но двоичное кодирование данных по-прежнему составляет информационную основу любого современного компьютера.

Еще одной революционной идеей, значение которой трудно переоценить, является предложенный Нейманом принцип «хранимой программы». Первоначально программа задавалась путем установки перемычек на специальной коммутационной панели. Это было весьма трудоемким занятием: например, для изменения программы машины ENIAC требовалось несколько дней, в то время как собственно расчет не мог продолжаться более нескольких минут – выходили из строя лампы, которых было огромное количество. Нейман первым догадался, что программа может также храниться в виде набора нулей и единиц, причем в той же самой памяти, что и обрабатываемые ею числа. Отсутствие принципиальной разницы между программой и данными дало возможность ЭВМ самой формировать для себя программу в соответствии с результатами вычислений.

Структура ЭВМ

Джон фон Нейман не только выдвинул основополагающие принципы логического устройства ЭВМ, но и предложил ее структуру, которая воспроизводилась в течение первых двух поколений ЭВМ. Основными блоками по Нейману являются устройство управления (УУ) и арифметико-логическое устройство (АЛУ), обычно объединяемые в центральный процессор, в который также входит набор регистров общего назначения (РОН) – для промежуточного хранения информации в процессе ее обработки; память, внешняя память, устройства ввода и вывода. Следует отметить, что внешняя память отличается от устройств ввода и вывода тем, что данные в нее заносятся в виде, удобном компьютеру, но недоступном для непосредственного восприятия человеком.

Архитектура ЭВМ, построенная на принципах Джон фон Неймана.

Сплошные линии со стрелками указывают направление потоков информации, пунктирные – управляющих сигналов.

13. Информационные технологии и программное обеспечение.

Информационные технологии (ИТ, от англ. information technology, IT) — широкий класс дисциплин и областей деятельности, относящихся к технологиям создания, управления и обработки данных, в том числе с применением вычислительной техники. В последнее время под информационными технологиями чаще всего понимают компьютерные технологии. В частности, ИТ имеют дело с использованием компьютеров и программного обеспечения для хранения, преобразования, защиты, обработки, передачи и получения информации. Специалистов по компьютерной технике и программированию часто называют ИТ-специалистами.

Согласно определению, принятому ЮНЕСКО, ИТ — это комплекс взаимосвязанных научных, технологических, инженерных дисциплин, изучающих методы эффективной организации труда людей, занятых обработкой и хранением информации; вычислительную технику и методы организации и взаимодействия с людьми и производственным оборудованием, их практические приложения, а также связанные со всем этим социальные, экономические и культурные проблемы. Сами ИТ требуют сложной подготовки, больших первоначальных затрат и наукоемкой техники. Их внедрение должно начинаться с создания математического обеспечения, формирования информационных потоков в системах подготовки специалистов.

Основные черты современных ИТ:

компьютерная обработка информации по заданным алгоритмам;

хранение больших объёмов информации на машинных носителях;

передача информации на значительные расстояния в ограниченное время.

Дисциплина информационных технологий

В широком понимании ИТ охватывает все области передачи, хранения и восприятия информации и не только компьютерные технологии. При этом ИТ часто ассоциируют именно с компьютерными технологиями, и это не случайно: появление компьютеров вывело ИТ на новый уровень. Как когда-то телевидение, а ещё ранее печатное дело. При этом основой ИТ являются технологии обработки, хранения и восприятия информации.

Програ́ммное обеспе́чение(допустимо также произношение обеспече́ние[2][3][4][5]), ПО — совокупность программ системы обработки информации и программных документов[6], необходимых для эксплуатации этих программ (ГОСТ 19781-90[7]).

Также — совокупность программ, процедур и правил, а также документации, относящихся к функционированию системы обработки данных (СТ ИСО 2382/1-84)[7].

Программное обеспечение является одним из видов обеспечения вычислительной системы, наряду с техническим (аппаратным), математическим, информационным, лингвистическим, организационным и методическим обеспечением[8].

В компьютерном сленге часто используется слово софт от английского слова software, которое в этом смысле впервые применил в статье в American Mathematical Monthly математик из Принстонского университета Джон Тьюки (англ. John W. Tukey) в 1958 году.

Классификация ПО

Программное обеспечение принято по назначению подразделять на системное, прикладное и инструментальное, а по способу распространения и использования на несвободное/закрытое, открытое и свободное. Свободное программное обеспечение может распространяться, устанавливаться и использоваться на любых компьютерах дома, в офисах, школах, вузах, а также коммерческих и государственных учреждениях без ограничений.

14. Группы программного обеспечения. Операционные системы и их классы.

Программа – это упорядоченная последовательность команд для компьютера, записанная на специальном языке и помещенная в файл. Как они создаются? Для начала нужно знать для чего нужна программа, что она должна выполнять. Потом на специальном машинном языке человек пишет нужную программу, используя команды, понятные для компьютера. Такой процесс создания программ, называется программированием.

Совокупность программ и данных, предназначенных для их обработки, называется программным обеспечением ПК. Некоторые программы встроены в постоянную память компьютера, но их мало. В основном они хранятся на дискетах, винчестерах, дисках.

Все программы можно разбить на три группы:

*прикладные программы. Т.е. каждая из этих программ служит для решения конкретной задачи (например, для создания текста существует программа текстовый редактор LEXICON, MS Word; табличные процессоры - MS Excell, 1C; для создания рисунка – графический редактор, Paint, PhotoShop, CorelDraw).

*инструментальные программы. Эти программы служат для создания новых программ, написанных на различных языках программирования. Visual Basic, Delphi, Pascal, C++.

* системные программы. Они служат для управления работой ПК и выполняют различные операции по обслуживанию пользователя. Таких программ очень мало, но они очень важны, т.к. без них не сможет работать ни одна другая программа. Системные программы связывают все устройства ПК в единую систему, поэтому называются системными.

Среди системных программ можно выделить следующие группы программ:

программы-операционные системы. Они управляют работой ПК.

*Программы-оболочки (надстройки над ОС). Они служат для более удобного общения человека с компьютером, т.е. обеспечивают удобный интерфейс. NC, FAR, Windows Commander.

*Программы-операционные оболочки. По мимо удобного интерфейса позволяют пользователю выполнять ряд операций, не предусмотренных в ОС.

*Программы-утилиты. Вспомогательные программы: архиваторы, антивирусные программы. (DrWeb, Касперский, WinZip, WinRar, PkZip)

Операционная система

Все многообразие программ, используемых на современном компьютере, называется программным обеспечением - ПО (software).

Программы, составляющие ПО, можно разделить на три группы: системное ПО, системы программирования, прикладное ПО. Ядром системного ПО является операционная система (ОС).

ОС - это неотъемлемая часть ПО, управляющая техническими средствами компьютера (hardware).. Операционная система - это программа, координирующая действия вычислительной машины; под ее управлением осуществляется выполнение программ.

Основные функции операционной системы:

1. Обмен данными между компьютером и различными периферийными устройствами (терминалами, принтерами, гибкими дисками, жесткими дисками и т.д.). Такой обмен данными называется "ввод/вывод данных".

2. Обеспечение системы организации и хранения файлов.

3. Загрузка программ в память и обеспечение их выполнения.

4. Организация диалога с пользователем.

ОС – это комплекс взаимосвязанных системных программ, назначение которого – организовать взаимодействие пользователя с компьютером и выполнение всех других программ.

Состав операционной системы.

Структуру ОС составляют следующие модули:

базовый модуль (ядро ОС)- управляет работой программы и файловой системой, обеспечивает доступ к ней и обмен файлами между периферийными устройствами;

командный процессор - расшифровывает и исполняет команды пользователя, поступающие прежде всего через клавиатуру;

драйверы периферийных устройств - программно обеспечивают согласованность работы этих устройств с процессором (каждое периферийное устройство обрабатывает информацию по разному и в различном темпе);

дополнительные сервисные программы (утилиты) - делают удобным и многосторонним процесс общения пользователя с компьютером.

Загрузка ОС. Файлы, составляющие ОС, хранятся на диске, поэтому система называется дисковой операционной (ДОС). Известно, что для их выполнения программы - и, следовательно, файлы ОС - должны находится в оперативной памяти (ОЗУ). Однако, чтобы произвести запись ОС в ОЗУ, необходимо выполнить программу загрузку, которой сразу после включения компьютера в ОЗУ нет. Выход из этой ситуации состоит в последовательной, поэтапной загрузке ОС в оперативную память.

Первый этап загрузки ОС. В системном блоке компьютера находится постоянное запоминающее устройство (ПЗУ, постоянная память, ROM-Read Only Memory - память с доступом только для чтения), в котором содержатся программы тестирования блоков компьютера и первого этапа загрузки ОС. Они начинают выполнятся с первым импульсом тока при включении компьютера. На этом этапе процессор обращаются к диску и проверяет наличие на определенном месте (в начале диска) очень небольшой программы - загрузчика. Если эта программа обнаружена, то она считывается в ОЗУ и ей передается управление.

Второй этап загрузки ОС. Программа - загрузчик, в свою очередь, ищет на диске базовый модуль ОС, переписывает его память и передает ему управление.

Третий этап загрузки ОС. В состав базового модуля входит основной загрузчик, который ищет остальные модули ОС и считывает их в ОЗУ. После окончания загрузки ОС управление передается командному процессору и на экране появляется приглашение системы к вводу команды пользователя.

Заметим, что в оперативной памяти во время работы компьютера обязательно должны находится базовый модуль ОС и командный процессор. Следовательно, нет необходимости загружать в оперативную память все файлы ОС одновременно. Драйверы устройств и утилиты могут подгружаться в ОЗУ по мере необходимости, что позволяет уменьшать обязательный объем оперативной памяти, отводимый под системное программное обеспечение.

Первая задача ОС – организация связи, общения пользователя с компьютером в целом и его отдельными устройствами. Такое общение осуществляется с помощью команд, которые в том или ином виде человек сообщает операционной системе. В ранних вариантах операционных систем такие команды просто вводились с клавиатуры в специальную строку. В последующем были созданы программы – оболочки ОС, которые позволяют общаться не только с ОС не только текстовым языком команд, а с помощью меню (в том числе пиктографического) или манипуляций с графическими объектами.

Вторая задача ОС – организация взаимодействия всех блоков компьютера в процессе выполнения программы, которую назначил пользователь для решения задачи. В частности, ОС организует и следит за размещением в оперативной памяти и на диске нужных для работы программы данных, обеспечивает своевременное подключение устройств компьютера по требованию программы и т.п.

Третья задача ОС – обеспечение так называемых системных работ, которые бывает необходимо выполнить для пользователя. Сюда относится проверка, “лечение” и форматирование диска, удаление и восстановление файлов, организация файловой системы и т.п. Обычно такие работы осуществляются с помощью специальных программ, входящих в ОС и называемых утилитами.

Операционная система выполняет роль связующего звена между аппаратурой компьютера, с одной стороны, и выполняемыми программами, а также пользователем, с другой стороны.

ОС обычно хранится во внешней памяти компьютера – на диске. При включении компьютера она считывается с дисковой памяти и размещается в ОЗУ.

Этот процесс называют загрузкой ОС.

В функции ОС входит:

- осуществление диалога с пользователем;

- ввод-вывод и управление данными;

- планирование и организация процесса обработки программ;

- распределение ресурсов (оперативной памяти, процессора, внешних устройств);

- запуск программ на выполнение;

- всевозможные вспомогательные операции обслуживания;

- передача информации между различными внутренними устройствами;

- программная поддержка работы периферийных устройств (дисплея, клавиатуры, принтера и др.).

ОС можно назвать программным продолжением устройства управления компьютера.

В зависимости от количества одновременно обрабатываемых задач и числа пользователей, которых могут обслуживать ОС, различают четыре основных класса операционных систем:

1. однопользовательские однозадачные, которые поддерживают одну клавиатуру и могут работать только с одной (в данный момент) задачей;

2. однопользовательские однозадачные с фоновой печатью, которые позволяют помимо основной задачи запускать одну дополнительную задачу, ориентированную как правило, на вывод информации на печать.

3. однопользовательские многозадачные, которые обеспечивают одному пользователю параллельную обработку нескольких задач.

4. многопользовательские многозадачные, позволяющие на одном компьютере запускать несколько задач нескольким пользователям.

ОС для персонального компьютера, ориентированного на профессиональное применение, должна содержать следующие основные компоненты:

- программы управления вводом/выводом;

- программы, управляющие файловой системой и планирующие задания для компьютера;

- процессор командного языка, который принимает, анализирует и выполняет команды, адресованные ОС.

В каждой ОС имеется свой командный язык, который позволяет пользователю выполнять те или иные действия:

- обращаться к каталогу;

- выполнять разметку внешних носителей;

- запускать программы;

- … и другие действия.

Анализ и исполнение команд пользователя, включая загрузку готовых программ из файлов в оперативную память и их запуск, осуществляет командный процессор ОС.

Важным классом системных программ являются драйверы устройств.

Для управления внешними устройствами компьютера используются специальные системные программы – драйверы. Драйверы стандартных устройств образуют в совокупности базовую систему ввод-вывод (BIOS), которая обычно заносится в постоянное ЗУ компьютера.

Нередко к системным программам относят антивирусные средства, программы архивирования файлов и т.п.

Второй класс программ – это прикладные программы. Здесь нет единой точки зрения, какие именно программы относятся к этому классу. Обычно прикладной называют любую программу, позволяющую пользователю без программирования решать определенный класс задач

Операционная система блестяще справляется со своими обязанностями. На практике одно из основных преимуществ использования OS заключается в простоте ее понимания, несмотря на функциональную сложность (То есть система рассчитана на выполнение достаточно сложных функций).

Существуют несколько наиболее распространенных ОС.

Например, MS-DOS расшифровывается как дисковая операционная система. Разработчиком MS-DOS является Корпорация Microsoft.

15. Файл. Файловая система.

Файл-- это определенное количество информации (программа или данные), имеющее имя и хранящееся в долговременной (внешней) памяти.

Имя файла состоит из двух частей, разделенных точкой: собственно имя файла и расширение, определяющее его тип (программа, данные и т. д.). Собственно имя файлу дает пользователь, а тип файла обычно задается программой автоматически при его создании.

Фа́йловая систе́ма(англ. file system) — порядок, определяющий способ организации, хранения и именования данных на носителях информации в компьютерах, а также в другом электронном оборудовании: цифровых фотоаппаратах, мобильных телефонах и т. п. Файловая система определяет формат содержимого и физического хранения информации, которую принято группировать в виде файлов. Конкретная файловая система определяет размер имени файла (папки), максимальный возможный размер файла и раздела, набор атрибутов файла. Некоторые файловые системы предоставляют сервисные возможности, например, разграничение доступа или шифрование файлов.

Файловая система связывает носитель информации с одной стороны и API для доступа к файлам — с другой. Когда прикладная программа обращается к файлу, она не имеет никакого представления о том, каким образом расположена информация в конкретном файле, так же, как и на каком физическом типе носителя (CD, жёстком диске, магнитной ленте, блоке флеш-памяти или другом) он записан. Всё, что знает программа — это имя файла, его размер и атрибуты. Эти данные она получает от драйвера файловой системы. Именно файловая система устанавливает, где и как будет записан файл на физическом носителе (например, жёстком диске).

С точки зрения операционной системы (ОС), весь диск представляет собой набор кластеров (как правило, размером 512 байт и больше)[1]. Драйверы файловой системы организуют кластеры в файлы и каталоги (реально являющиеся файлами, содержащими список файлов в этом каталоге). Эти же драйверы отслеживают, какие из кластеров в настоящее время используются, какие свободны, какие помечены как неисправные.

Однако файловая система не обязательно напрямую связана с физическим носителем информации. Существуют виртуальные файловые системы, а также сетевые файловые системы, которые являются лишь способом доступа к файлам, находящимся на удалённом компьютере.

16. Основные операции с файлами. Файловые системы в различных ОС

. ОСНОВНЫЕ ОПЕРАЦИИ С ФАЙЛАМИ

Все программы и данные хранятся на внешней памяти компьютера в виде файлов. Файл – это определённое количество информации (программы или данные), имеющие имя и хранящееся в долговременной памяти

Имя файла состоит из двух частей, разделенных точкой: собственно имя файла и расширения, определяющее его тип. Собственно имя файлу даёт пользователь, а тип файла задается программой автоматически при его создании

В различных операционных системах существуют форматы имен файлов. В операционной системе MS - DOS имя файла должно содержать не более 8 букв латинского алфавита или цифр, а расширение из трёх латинских букв ( txt – текстовый файл, pas – файл созданный на Паскале)

В операционной системе WINDOWS имя файла может иметь до 255 символов, причем допускается использование русского алфавита

На каждом носителе информации (гибком, жёстком или лазерном диске) может храниться большое количество файлов. Порядок хранения файлов на диске определяется установленной файловой системой. Для дисков с небольшим количеством файлов удобно применять одноуровневую файловую систему, когда каталог представляет собой линейную последовательность имен файлов

Если на диске хранятся сотни и тысячи файлов, то для удобства поиска файлы организуются в многоуровневую, иерархическую файловую систему, которая имеет «древовидную» структуру

Начальный корневой каталог содержит каталоги первого уровня, в свою очередь в каждом из них бывают вложенные каталоги второго уровня и т.д. В каталогах всех уровней могут храниться и файлы

Операции над файлами: копирование (копия файла помещается в другой каталог), перемещение (сам файл перемещается в другой каталог), удаление (запись о файле удаляется из каталога), переименование (изменятся имя файла)

операцио́нная систе́ма,сокр. ОС (англ. operating system, OS) — комплекс управляющих и обрабатывающих программ, которые, с одной стороны, выступают как интерфейс между устройствами вычислительной системы и прикладными программами, а с другой стороны — предназначены для управления устройствами, управления вычислительными процессами, эффективного распределения вычислительных ресурсов между вычислительными процессами и организации надёжных вычислений. Это определение применимо к большинству современных операционных систем общего назначения. В логической структуре типичной вычислительной системы операционная система занимает положение между устройствами с их микроархитектурой, машинным языком и, возможно, собственными (встроенными) микропрограммами — с одной стороны — и прикладными программами с другой.

Разработчикам программного обеспечения операционных систем позволяет абстрагироваться от деталей реализации и функционирования устройств, предоставляя минимально необходимый набор функций (см. интерфейс программирования приложений).

В большинстве вычислительных систем операционная система является основной, наиболее важной (а иногда и единственной) частью системного программного обеспечения. С 1990-х годов наиболее распространёнными операционными системами являются системы семейства Microsoft Windows и системы класса UNIX (особенно Linux и Mac OS).

Функции операционных систем

Основные функции:

Выполнение по запросу программ (ввод и вывод данных, запуск и остановка других программ, выделение и освобождение дополнительной памяти и др.).

Загрузка программ в оперативную память и их выполнение.

Стандартизованный доступ к периферийным устройствам (устройства ввода-вывода).

Управление оперативной памятью (распределение между процессами, организация виртуальной памяти).

Управление доступом к данным на энергонезависимых носителях (таких как жёсткий диск, оптические диски и др.), организованным в той или иной файловой системе.

Обеспечение пользовательского интерфейса.

Сохранение информации об ошибках системы.

Дополнительные функции:

Параллельное или псевдопараллельное выполнение задач (многозадачность).

Эффективное распределение ресурсов вычислительной системы между процессами.

Разграничение доступа различных процессов к ресурсам.

Организация надёжных вычислений (невозможности одного вычислительного процесса намеренно или по ошибке повлиять на вычисления в другом процессе), основана на разграничении доступа к ресурсам.

Взаимодействие между процессами: обмен данными, взаимная синхронизация.

Защита самой системы, а также пользовательских данных и программ от действий пользователей (злон намеренных или по незнанию) или приложений.

Многопользовательский режим работы и разграничение прав доступа (см. аутентификация, авторизация).

17. Дисководы, дисковые устройства и накопители информации.

Дисковод— устройство компьютера, позволяющее осуществить чтение/запись информации на носители информации. Основное назначение дисковода, в рамках концепции иерархии памяти — организация долговременной памяти.

По мере развития достижений техники, применяемые в компьютерах дисководы использовали всевозможные способы записи, чтения и хранения информации на носителе (перемагничивание ферритовых сердечников, магнитная запись на магнитной карте, ленте и магнитном барабане, оптическая запись и чтение при помощи лазера). По мере развития таких сегментов компьютерной индустрии, как офисный компьютер или домашний компьютер, компьютерные дисководы стали массовыми устройствами воплощающими последние достижения науки и техники.

Дополнительные сведения: История вычислительной техники

При этом носитель может быть съёмным (оптический диск, гибкий диск) либо встроенным в устройство (жёсткий диск); иметь форму диска или ленты. Съёмный носитель часто для защиты помещают в картридж, конверт, корпус и так далее.

По устоявшейся в СССР терминологии, в название дисковода включалось слово «накопитель» (накопитель на жёстких (магнитных) дисках, накопитель на магнитной ленте), что позволяло различать устройство чтения/записи от устройства хранения информации.

Исходя из принципов чтения/записи на носитель информации, дисководы бывают нескольких типов:

использующие магнитную запись/чтение носителя:

на диски: флоппи (дисководы для дискет) и дисководы на жёстких дисках,

на ленты: стример;

дисководы, использующие для записи оптических дисков лазер (обычно называемые оптическими приводами):

компакт-диски и их развитие — (GD-ROM, DVD, HD DVD, Blu-Ray) с носителями, предназначенными только для записи (дописи) информации (CD-ROM, DVD-ROM и т.п) или позволяющие перезапись (+R, -R, +RW, -RW и т.п.);

магнитооптические, к которым относятся: Zip дисководы и Jaz дисководы, использующие Zip- и Jaz дискеты соответственно