
- •Федеральное агентство по образованию
- •Введение
- •Глава 1 общее представление о строении металлов Кристаллические структуры металлов и сплавов
- •1.2. Дефекты строения реальных кристаллов
- •1.3. Кристаллизация металлов
- •1.4. Полиморфизм металлов
- •1.5. Основные сведения о металлических сплавах
- •1.6. Диаграммы состояния двойных сплавов
- •1.6.1. Диаграмма состояния для сплавов, компоненты которых нерастворимы в твердом состоянии (I рода)
- •1.6.2. Диаграмма состояния для сплавов, компоненты которых неограниченно растворимы в твердом состоянии (II рода)
- •1.6.3. Диаграмма состояния для сплавов, компоненты которых ограниченно растворимы в твердом состоянии (III рода)
- •1.6.4. Диаграмма состояния для сплавов, компоненты которых образуют устойчивое химическое соединение (IV рода)
- •1.6.5. Связь между свойствами сплавов и типом диаграммы состояния
- •Глава 2 диаграмма состояния железоуглеродистых сплавов
- •2.1. Структурные составляющие сплавов железа с углеродом
- •2.2. Участок диаграммы состояния Fe-Fe3c с концентрацией углерода 0...2,14 %
- •2.3. Участок диаграммы состояния Fe-Fe3c с концентрацией углерода 2,14...6,67 %
- •Глава 3 термическая обработка
- •3.1. Основы термической обработки стали
- •3.1.1. Превращение перлита в аустенит и рост зерна аустенита при нагреве
- •3.1.2. Превращения аустенита при охлаждении
- •3.1.3. Мартенситное превращение
- •3.1.4. Превращения мартенсита при нагреве
- •3.2. Основные виды термической обработки стали
- •3.2.1. Отжиг сталей
- •3.2.2. Закалка сталей
- •3.2.3. Закаливаемость и прокаливаемость стали
- •3.2.4. Поверхностная закалка
- •3.2.5. Отпуск сталей
- •3.3. Термомеханическая обработка стали
- •3.4. Термическая обработка чугуна
- •3.5. Дефекты термической обработки стали
- •Глава 4 химико-термическая обработка
- •4.1. Основы химико-термической обработки сталей
- •4.2. Цементация
- •4.3. Азотирование
- •4.4. Цианирование
- •4.5. Диффузионная металлизация
- •Глава 5 углеродистые и легированные стали
- •5.1. Влияние примесей на свойства сталей
- •5.2. Классификация сталей
- •5.3. Углеродистые стали
- •5.4. Легированные стали
- •5.4.1. Конструкционные стали
- •5.4.2. Инструментальные стали
- •5.4.3. Стали специального назначения
- •Глава 6 чугун
- •8.1. Белый чугун
- •8.2. Серый чугун
- •8.3. Ковкий чугун
- •8.4. Высокопрочный чугун
- •Глава 6 цветные металлы и сплавы
- •6.1. Общее понятие о цветных металлах
- •6.2. Алюминий и его сплавы
- •6.3. Магний и его сплавы
- •6.4. Медь и ее сплавы
- •6.5. Титан и его сплавы
- •Глава 7 композиционные материалы
- •7.1. Классификация композиционных материалов
- •7.2. Особенности получения км жидкофазными методами
- •7.3. Особенности получения км твердофазными методам»
- •7.4. Методы и условия получения эвтектических км
- •7.5. Технология изготовления дисперсно-упрочненных км
- •7.6. Технология изготовления слоистых км
- •Глава 8 порошковая металлургия
- •8.1. Производство металлических порошков
- •8.2. Формование порошков
- •8.3. Спекание порошковых материалов
- •8.4. Свойства и области применения порошковых материалов
- •8.5. Техническая керамика
- •8.6. Керамике-полимерные материалы
- •Глава 9 неметаллические материалы
- •9.1. Общее понятие о неметаллических материалах
- •9.2. Полимеры
- •9.2.1. Строение и классификация полимеров
- •9.2.2. Свойства полимеров
- •Глава 9. Неметаллические материалы
- •9.3. Пластмассы и полимерные композиционные материалы
- •9.3.1. Состав и классификация пластмасс
- •9.3.2. Технология получения изделий из пластмасс и полимерных композиционных материалов
- •9.4. Резиновые материалы
- •9.5. Сотовые и панельные конструкции
- •9.5. Клеящие материалы
- •9.6. Лакокрасочные материалы
- •9.7. Древесные материалы
- •Глава 1 общее представление о строении металлов
- •Глава 2 диаграмма состояния железоуглеродистых сплавов
- •Глава 3 термическая обработка
- •Глава 4
- •Список литературы
- •Приложения Содержание
- •Глава 1 общее представление о строении металлов 5
- •Глава 2 диаграмма состояния железоуглеродистых сплавов 25
- •Глава 3 термическая обработка 32
- •Глава 4 61
- •Шевельков Валерий Владимирович
1.3. Кристаллизация металлов
Кристаллизация обусловлена стремлением системы при определенных условиях перейти к энергетически более устойчивому состоянию с меньшей свободной энергией F. На рис. 1.3 показана зависимость изменения свободной энергии для жидкой и твердой фаз от изменения температуры системы. Меньшей свободной энергией вещество в жидком состоянии обладает при температуре выше, а в твердом - ниже теоритической температуры плавления (точка Ts). В реальных условиях процесс кристаллизации не может начаться при температуре Ts, так как при данной температуре система находится в состоянии равновесия (Fж = Fт). Для того чтобы процесс кристаллизации начался, жидкость необходимо охладить ниже точки Ts. Температура, при которой реально начинается процесс кристаллизации, называется фактической температурой кристаллизации (Ткр). Разность между теоретической температурой Ts и реальной температурой Ткр , при которой протекает кристаллизация, называется степенью переохлаждения системы ∆T. При нагреве переход из твердого в жидкое состояние также начинается при определенной степени перегрева системы ∆T.
Рис. 1.3. Изменение свободной энергии F металла в жидком (Fж) и твердом (Fт) состоянии в зависимости от температуры Т
Выделяют два вида кристаллизации:
первичная - переход металла из жидкого состояния в твердое с образованием кристаллической структуры;
вторичная - образование новых кристаллов в твердом кристаллическом веществе.
Кристаллизацию металлов и сплавов исследуют с помощью термического анализа, суть которого заключается в регистрации температуры системы через равные промежутки времени. Для этого в тигель 1 (рис. 1.4, а) с расплавленным металлом погружают термоэлектрический термометр (термопару) 2, подключенный к регистрирующему потенциометру 3. На основании полученных данных в координатах температура - время строят кривую охлаждения (рис. 1.4, б), которая отражает последовательность протекания процесса кристаллизации.
На рис. 1.5 приведены кривые охлаждения металла при кристаллизации с различной скоростью охлаждения.
Верхний участок кривой охлаждения показывает понижение температуры жидкого металла. При температуре, соответствующей горизонтальному участку, происходит процесс затвердевания жидкого металла. Выделение скрытой теплоты кристаллизации способствует сохранению постоянной температуры в течение всего времени, необходимого для завершения процесса. Нижний участок кривой соответствует охлаждению закристаллизовавшегося металла. Тонкой горизонтальной линией на диаграмме показано значение теоретической температуры кристаллизации Ts. Из рис. 1.5 видно, что по мере увеличения скорости охлаждения (V1< V2< V3) степень переохлаждения расплава возрастает и кристаллизация начинается при более низких температурах. Период кристаллизации при этом сокращается.
Рис. 1.4. Кристаллизация металлов:
а - схема установки для регистрации процесса; б - кривая охлаждения и схема процесса кристаллизации (L - жидкое состояние, α - твердое состояние)
Основы теории кристаллизации были разработаны более 100 лет назад основоположником науки о металлах - металловедения - Д.К. Черновым, который установил, что кристаллизация состоит из двух процессов: зарождения мельчайших частиц твердого вещества, называемых зародышами, или центрами кристаллизации, и роста кристаллов из этих центров. При охлаждении металла ниже Ts в различных участках жидкого металла образуются устойчивые, способные к росту кристаллические зародыши. С понижением температуры расплава количество зародышей возрастает. В реальных условиях центры кристаллизации образуются на тугоплавких неметаллических включениях.
Рис. 1.5. Влияние скорости охлаждения на процессы кристаллизации: а - кривые охлаждения чистого металла; б - влияние степени переохлаждения ∆Т на скорость зарождения (СЗ) и скорость роста (СР)
Рост кристалла заключается в том, что к поверхности зародышей присоединяются все новые атомы жидкого металла. Сначала образовавшиеся кристаллы растут свободно, сохраняя правильную геометрическую форму. При столкновении растущих кристаллов их форма нарушается, и в дальнейшем рост продолжается только там, где есть свободный доступ к расплаву. В результате кристаллы не имеют правильной геометрической формы. Такие кристаллы называются зернами. Размер зерен зависит от скорости зарождения центров кристаллизации (СЗ) и скорости роста кристаллов (СР). На рис. 1.5, б показана зависимость этих параметров от степени переохлаждения расплава.