- •Федеральное агентство по образованию
- •Введение
- •Глава 1 общее представление о строении металлов Кристаллические структуры металлов и сплавов
- •1.2. Дефекты строения реальных кристаллов
- •1.3. Кристаллизация металлов
- •1.4. Полиморфизм металлов
- •1.5. Основные сведения о металлических сплавах
- •1.6. Диаграммы состояния двойных сплавов
- •1.6.1. Диаграмма состояния для сплавов, компоненты которых нерастворимы в твердом состоянии (I рода)
- •1.6.2. Диаграмма состояния для сплавов, компоненты которых неограниченно растворимы в твердом состоянии (II рода)
- •1.6.3. Диаграмма состояния для сплавов, компоненты которых ограниченно растворимы в твердом состоянии (III рода)
- •1.6.4. Диаграмма состояния для сплавов, компоненты которых образуют устойчивое химическое соединение (IV рода)
- •1.6.5. Связь между свойствами сплавов и типом диаграммы состояния
- •Глава 2 диаграмма состояния железоуглеродистых сплавов
- •2.1. Структурные составляющие сплавов железа с углеродом
- •2.2. Участок диаграммы состояния Fe-Fe3c с концентрацией углерода 0...2,14 %
- •2.3. Участок диаграммы состояния Fe-Fe3c с концентрацией углерода 2,14...6,67 %
- •Глава 3 термическая обработка
- •3.1. Основы термической обработки стали
- •3.1.1. Превращение перлита в аустенит и рост зерна аустенита при нагреве
- •3.1.2. Превращения аустенита при охлаждении
- •3.1.3. Мартенситное превращение
- •3.1.4. Превращения мартенсита при нагреве
- •3.2. Основные виды термической обработки стали
- •3.2.1. Отжиг сталей
- •3.2.2. Закалка сталей
- •3.2.3. Закаливаемость и прокаливаемость стали
- •3.2.4. Поверхностная закалка
- •3.2.5. Отпуск сталей
- •3.3. Термомеханическая обработка стали
- •3.4. Термическая обработка чугуна
- •3.5. Дефекты термической обработки стали
- •Глава 4 химико-термическая обработка
- •4.1. Основы химико-термической обработки сталей
- •4.2. Цементация
- •4.3. Азотирование
- •4.4. Цианирование
- •4.5. Диффузионная металлизация
- •Глава 5 углеродистые и легированные стали
- •5.1. Влияние примесей на свойства сталей
- •5.2. Классификация сталей
- •5.3. Углеродистые стали
- •5.4. Легированные стали
- •5.4.1. Конструкционные стали
- •5.4.2. Инструментальные стали
- •5.4.3. Стали специального назначения
- •Глава 6 чугун
- •8.1. Белый чугун
- •8.2. Серый чугун
- •8.3. Ковкий чугун
- •8.4. Высокопрочный чугун
- •Глава 6 цветные металлы и сплавы
- •6.1. Общее понятие о цветных металлах
- •6.2. Алюминий и его сплавы
- •6.3. Магний и его сплавы
- •6.4. Медь и ее сплавы
- •6.5. Титан и его сплавы
- •Глава 7 композиционные материалы
- •7.1. Классификация композиционных материалов
- •7.2. Особенности получения км жидкофазными методами
- •7.3. Особенности получения км твердофазными методам»
- •7.4. Методы и условия получения эвтектических км
- •7.5. Технология изготовления дисперсно-упрочненных км
- •7.6. Технология изготовления слоистых км
- •Глава 8 порошковая металлургия
- •8.1. Производство металлических порошков
- •8.2. Формование порошков
- •8.3. Спекание порошковых материалов
- •8.4. Свойства и области применения порошковых материалов
- •8.5. Техническая керамика
- •8.6. Керамике-полимерные материалы
- •Глава 9 неметаллические материалы
- •9.1. Общее понятие о неметаллических материалах
- •9.2. Полимеры
- •9.2.1. Строение и классификация полимеров
- •9.2.2. Свойства полимеров
- •Глава 9. Неметаллические материалы
- •9.3. Пластмассы и полимерные композиционные материалы
- •9.3.1. Состав и классификация пластмасс
- •9.3.2. Технология получения изделий из пластмасс и полимерных композиционных материалов
- •9.4. Резиновые материалы
- •9.5. Сотовые и панельные конструкции
- •9.5. Клеящие материалы
- •9.6. Лакокрасочные материалы
- •9.7. Древесные материалы
- •Глава 1 общее представление о строении металлов
- •Глава 2 диаграмма состояния железоуглеродистых сплавов
- •Глава 3 термическая обработка
- •Глава 4
- •Список литературы
- •Приложения Содержание
- •Глава 1 общее представление о строении металлов 5
- •Глава 2 диаграмма состояния железоуглеродистых сплавов 25
- •Глава 3 термическая обработка 32
- •Глава 4 61
- •Шевельков Валерий Владимирович
5.4. Легированные стали
Основными легирующими элементами являются кремний, никель, марганец, хром. Такие элементы, как вольфрам, молибден, ванадий, алюминий, титан и бор, вводят в сталь в сочетании с хромом, никелем и марганцем для дополнительного улучшения свойств. Однако высокие эксплуатационные характеристики легированных сталей обнаруживаются только после закалки и отпуска, так как в отожженном состоянии их механические свойства практически не отличаются от свойств углеродистых сталей. Улучшение механических свойств обусловлено влиянием легирующих элементов на свойства феррита, дисперсность карбидной фазы, устойчивость мартенсита при отпуске, прокаливаемость и размер зерна.
Легирующие элементы, растворяясь в феррите, упрочняют его. Однако упрочнение феррита приводит к снижению ударной вязкости, особенно если концентрация легирующих элементов больше 1 %. Исключение составляет никель, который не снижает вязкости стали.
Карбидообразующие элементы (Сг, Mo, V, W, Nb, Ti) влияют на природу и свойства карбидов в стали. Специальные карбиды легирующих элементов способны при нагреве растворяться в аустените, а на стадии отпуска, выделяясь из перенасыщеного твердого раствора в виде мелкодисперсных фаз, упрочнять сталь. Легирование сталей хромом, бором, молибденом повышает их прокаливаемость. Наиболее эффективно повышает прокаливаемость комплексное легирование Сг + Mo, Cr + Ni, Cr + Ni + Mo. Большинство легирующих элементов измельчают зерно, но особенно эффективно это делают ванадий, ниобий, титан, цирконий, алюминий.
Рассмотрим некоторые наиболее распространенные легированные стали, применяемые в народном хозяйстве.
5.4.1. Конструкционные стали
Цементуемые стали обычно содержат 0,1...0,25 % углерода, а в качестве легирующих элементов - хром, марганец, бор, молибден, ванадий, титан, никель в пределах от 0,002 (В) до 4,4 % (Ni). После цементации, закалки и низкого отпуска изделия из таких сталей имеют высокую поверхностную твердость (58...62 НКСЭ) и вязкую сердцевину с твердостью 15...30 HRC3. К углеродистым цементуемым сталям относятся стали 10, 15, 20. Характерными представителями легированных цементуемых сталей являются:
□ стали средней прочности (15ХР, 15Х, 20Х, 20ХН), которые идут на изготовление небольших деталей, эксплуатируемых при средних нагрузках (зубчатые колеса, валы, кулачки и т. п.). Эти стали характеризуются небольшой прокаливаемостью, а детали, изготовленные из них, чувствительны к надрезам;
Q стали повышенной прочности (12ХНЗА, 20ХНЗА, 20ХН4А, 18ХГГ, 18Х2НЗМА) идут на изготовление деталей средних и больших размеров, работающих в условиях интенсивного изнашивания при повышенных нагрузках (зубчатые колеса, поршневые пальцы, оси, ролики и др.). Эти стали малочувствительны к перегреву, хорошо прокаливаются и имеют повышенную прочность сердцевины.
Улучшаемые стали содержат 0,3...0,5 % углерода, легирующих элементов в сумме не более 5 % и используются после улучшения (закалки и высокого отпуска). Эти стали имеют высокую прочность и пластичность, высокий предел выносливости, малую чувствительность к отпускной хрупкости и хорошо прокаливаются. Из них изготавливают ответственные детали машин, работающих под воздействием циклических и ударных нагрузок.
Хромистые стали (30Х, 38Х, 40Х, 50Х) идут на изготовление коленчатых валов, зубчатых колес, осей, втулок, болтов, гаек. Эти стали характеризуются небольшой прокаливаемостью (15...25 мм), склонны к отпускной хрупкости. Прочность сталей увеличивается с увеличением содержания углерода, но при этом снижается пластичность.
Хромокремнемарганцевые стали (ЗОХГСА, 35ХГСА) имеют высокие механические свойства, хорошо свариваются, имеют невысокую прокаливаемость и широко применяются в автомобилестроении.
Хромоникелевые стали (40ХН, 45ХН) имеют высокую прочность и пластичность, хорошо сопротивляются ударным нагрузкам. Они применяются для изготовления ответственных деталей, работающих под воздействием динамических нагрузок (шестерни, валы). Прочность стали придает хром, а пластичность - никель. Хромоникелевые стали прокаливаются на большую глубину.
Лучшими показателями среди сталей обладают хромоникельмо-либденовые (40ХНМА, 38Х2Н2МА, 38ХНЗМФА). Эти стали имеют высокую прочность при хорошей вязкости, высокую усталостную прочность, глубоко прокаливаются. Из них изготавливают сильно нагруженные детали, а также валы, роторы, турбины, работающие в условиях больших знакопеременных нагрузок. Улучшение проводят путем закалки с 850 °С в масле и последующего отпуска при 620 °С.
Высокопрочные стали - это стали, имеющие предел прочности <тв > 1600 МПа при удовлетворительной пластичности. К ним относятся стали типа 30ХГСНА, 40ХГСНЗВА, 40ХН2СМА, 30Х2ГСН2ВМ, 30Х5МСФА. В табл. 5.5 приведены механические свойства двух марок высокопрочных сталей после закалки с 900 °С и низкого отпуска при 250 °С.
Таблица 5.5
|
Механические свойства |
высокопрочных сталей |
| ||||
|
Сталь |
|
Механические свойства сталей |
| |||
|
ов, МПа |
Ъ,9 |
/' 0 |
V,% |
кси |
, МДж/м2 | |
|
30ХГСНА 40ХГСНЗВА |
1850 2000 |
13 11 |
|
50 43 |
|
0,55 0,45 |
Указанная прочность сталей сохраняется благодаря низкому отпуску, а удовлетворительная пластичность обеспечивается высокой степенью чистоты и мелкозернистой структурой.
Общая тенденция развития техники и стремление к созданию легких, нематериалоемких машин требуют применения сталей, имеющих ств >2000 МПа и высокие показатели пластичности. После закалки и низкого отпуска уровень прочности таких сталей определяется в основном содержанием углерода, увеличение которого свыше 0,4 % делает сталь хрупкой. В этой связи особый интерес вызывают мар-тенситно-стареющие стали, представляющие собой сплавы железа и никеля (8...20 %) с очень низким (до 0,03 %) содержанием углерода и дополнительно легированные титаном и алюминием, а также часто кобальтом и молибденом. Механические свойства сталей типа Н12К15М10 и Н18К9М5Т приведены в табл. 5.6.
Таблица 5.6 Механические свойства мартенситно-стареющих сталей
|
Сталь |
|
Механические |
свойства сталей |
| |||
|
ств, МПа |
|
5,% |
|
м/,% |
кси, |
МДж/м2 | |
|
Н18К9М5Т Н12К15М10 |
2100 2500 |
|
8 6 |
|
50 30 |
|
0,5 0,3 |
Эти стали закаливают с температур 800...860 °С на воздухе, так как никель и другие легирующие элементы стабилизируют твердый раствор, который благодаря этому переохлаждается до мартенситного превращения. Закалка фиксирует сильно перенасыщенный легирующими элементами, почти безуглеродистый (<0,03 %) мартенсит, отличительными особенностями которого являются относительно невысокая прочность и очень высокая пластичность.
Основное упрочнение сталей достигается при последующем отпуске (старении) при 450...500 °С, когда из мартенсита выделяются мелкодисперсные упрочняющие частицы интерметаллидных фаз (Ni3Ti, NiAl, Fe2Mo, Ni3Mo и др.), когерентно связанные с матрицей. В результате такого механизма упрочнения сплавы обладают высокой прочностью и малой чувствительностью к надрезам, имеют высокое сопротивление хрупкому разрушению и сохраняют эти свойства в широком диапазоне температур - от криогенных до 450;..500 °С. Они обладают высокой технологичностью, так как неограниченно прокаливаются, хорошо свариваются, до старения легко деформируются и обрабатываются резанием. Мартенситно-стареющие стали применяются для наиболее ответственных деталей в авиации, ракетной технике, судостроении и как пружинный материал в приборостроении.
Рессорно-пружинные стали предназначены для изготовления пружин, упругих элементов и рессор различного назначения. Они должны обладать высокими пределами упругости и текучести (а0 2 > 800 МПа) и сопротивлением усталости при достаточной пластичности (5 » 5 %, \j/ = 20...25 %). Для обеспечения указанных свойств стали содержат более 0,5 % углерода и легированы одним или несколькими элементами: 1,5...2,8 % кремния; 0,6...1,2 % марганца; 0,2...1,2 % хрома; 0,1...0,25 % ванадия; 0,8...1,2 % вольфрама; 1,4...1,7 % никеля. Эти элементы обеспечивают необходимую прокаливаемость и закаливаемость, повышают релаксационную стойкость сталей и предел упругости.
Наиболее широко в промышленности применяются кремнистые стали типа 55С2, 60С2А, 70СЗА, из которых изготавливают пружины вагонов, автомобильные рессоры, торсионные валы и др. Однако кремнистые стали склонны к обезуглероживанию поверхности заготовок при горячей обработке/что снижает предел выносливости. Поэтому для высоконагруженных рессор и пружин применяют стали марок 60С2ХА, 50ХФА, 60СГА, 60С2Н2А с прокаливаемостью до 50...80 мм. Дополнительное легирование кремнистых сталей хромом, марганцем, ванадием, никелем увеличивает их прокаливаемость, уменьшает склонность к обезуглероживанию и росту зерна при нагреве.
Рессорно-пружинные стали подвергают закалке и отпуску на троо-стит или деформационному упрочнению после патентирования. Патен-тирование (разновидность изотермической закалки) применяется для пружинной проволоки, содержащей 0,65...0,9 % углерода, и заключается в ее высокотемпературной аустенизации для получения однородного аустенита и последующего пропускания через расплавленную соль с изотермической выдержкой при температуре 450.. .550 °С.
Шарикоподшипниковые стали. Рабочие поверхности деталей, работающих в условиях интенсивного изнашивания (подшипников, зубчатых колес, колец, деталей дорожных и землеройных машин), подвергаются не только абразивному, но и ударному изнашиванию, которое вызывет усталостное выкрашивание на рабочих поверхностях и излом деталей. Такой механизм изнашивания особенно актуален для подшипников, элементы которых изготавливают из шарикоподшипниковых сталей ШХ6, ШХ15, ШХ15СГ и ШХ20СГ. Такие стали содержат до 1 % углерода. Повышенное содержание углерода и легирование хромом обеспечивают повышенную прокаливаемость стали и получение после термической обработки высокой равномерной твердости, устойчивости против истирания и достаточной вязкости. Шарикоподшипниковые стали должны быть однородны по структуре и содержать минимальное количество неметаллических включений. Термическая обработка подшипниковых сталей включает отжиг, закалку и отпуск. Отжиг проводят перед изготовлением деталей для снижения твердости и получения структуры зернистого перлита. Закалку осуществляют с температур 820...860 °С в масле, отпуск - при 150...170 °С с выдержкой в течение 2...3 ч. Время между закалкой и отпуском не должно превышать 3 ч для уменьшения количества остаточного аустенита в закаленной стали. После окончательной термической обработки твердость стали составляет 62...65 HRC3, структура - мартенсит с включениями мелких карбидов и остаточный аустенит (8... 15 %). Для стабилизации размеров деталей их обрабатывают холодом при температурах 70...80 °С.
Детали машин, работающие в условиях абразивного изнашивания и больших ударных нагрузок, такие как корпуса шаровых мельниц, щеки камнедробилок, крестовины рельсов, траки гусеничных тракторов, изготавливают из аустенитной высокомарганцовистой стали марки 110ПЗЛ (сталь Гадфильда), которая содержит 1„.1,4 % углерода и 12... 14 % марганца. Эта сталь плохо обрабатывается резанием, поэтому изделия из нее получают преимущественно ковкой или литьем (буква Л в марке стали). Сталь 110ПЗЛ подвергают закалке с 1100 °С в воде. После закалки сталь имеет однофазную структуру аустенита, низкую твердость (220...250 НВ) и высокую вязкость. Высокая износостойкость стали обеспечивается наклепом аустенита в поверхностном слое в процессе работы в условиях ударного воздействия. В результате твердость поверхности повышается до 600 НВ, а сердцевина остается вязкой.
