
- •Федеральное агентство по образованию
- •Введение
- •Глава 1 общее представление о строении металлов Кристаллические структуры металлов и сплавов
- •1.2. Дефекты строения реальных кристаллов
- •1.3. Кристаллизация металлов
- •1.4. Полиморфизм металлов
- •1.5. Основные сведения о металлических сплавах
- •1.6. Диаграммы состояния двойных сплавов
- •1.6.1. Диаграмма состояния для сплавов, компоненты которых нерастворимы в твердом состоянии (I рода)
- •1.6.2. Диаграмма состояния для сплавов, компоненты которых неограниченно растворимы в твердом состоянии (II рода)
- •1.6.3. Диаграмма состояния для сплавов, компоненты которых ограниченно растворимы в твердом состоянии (III рода)
- •1.6.4. Диаграмма состояния для сплавов, компоненты которых образуют устойчивое химическое соединение (IV рода)
- •1.6.5. Связь между свойствами сплавов и типом диаграммы состояния
- •Глава 2 диаграмма состояния железоуглеродистых сплавов
- •2.1. Структурные составляющие сплавов железа с углеродом
- •2.2. Участок диаграммы состояния Fe-Fe3c с концентрацией углерода 0...2,14 %
- •2.3. Участок диаграммы состояния Fe-Fe3c с концентрацией углерода 2,14...6,67 %
- •Глава 3 термическая обработка
- •3.1. Основы термической обработки стали
- •3.1.1. Превращение перлита в аустенит и рост зерна аустенита при нагреве
- •3.1.2. Превращения аустенита при охлаждении
- •3.1.3. Мартенситное превращение
- •3.1.4. Превращения мартенсита при нагреве
- •3.2. Основные виды термической обработки стали
- •3.2.1. Отжиг сталей
- •3.2.2. Закалка сталей
- •3.2.3. Закаливаемость и прокаливаемость стали
- •3.2.4. Поверхностная закалка
- •3.2.5. Отпуск сталей
- •3.3. Термомеханическая обработка стали
- •3.4. Термическая обработка чугуна
- •3.5. Дефекты термической обработки стали
- •Глава 4 химико-термическая обработка
- •4.1. Основы химико-термической обработки сталей
- •4.2. Цементация
- •4.3. Азотирование
- •4.4. Цианирование
- •4.5. Диффузионная металлизация
- •Глава 5 углеродистые и легированные стали
- •5.1. Влияние примесей на свойства сталей
- •5.2. Классификация сталей
- •5.3. Углеродистые стали
- •5.4. Легированные стали
- •5.4.1. Конструкционные стали
- •5.4.2. Инструментальные стали
- •5.4.3. Стали специального назначения
- •Глава 6 чугун
- •8.1. Белый чугун
- •8.2. Серый чугун
- •8.3. Ковкий чугун
- •8.4. Высокопрочный чугун
- •Глава 6 цветные металлы и сплавы
- •6.1. Общее понятие о цветных металлах
- •6.2. Алюминий и его сплавы
- •6.3. Магний и его сплавы
- •6.4. Медь и ее сплавы
- •6.5. Титан и его сплавы
- •Глава 7 композиционные материалы
- •7.1. Классификация композиционных материалов
- •7.2. Особенности получения км жидкофазными методами
- •7.3. Особенности получения км твердофазными методам»
- •7.4. Методы и условия получения эвтектических км
- •7.5. Технология изготовления дисперсно-упрочненных км
- •7.6. Технология изготовления слоистых км
- •Глава 8 порошковая металлургия
- •8.1. Производство металлических порошков
- •8.2. Формование порошков
- •8.3. Спекание порошковых материалов
- •8.4. Свойства и области применения порошковых материалов
- •8.5. Техническая керамика
- •8.6. Керамике-полимерные материалы
- •Глава 9 неметаллические материалы
- •9.1. Общее понятие о неметаллических материалах
- •9.2. Полимеры
- •9.2.1. Строение и классификация полимеров
- •9.2.2. Свойства полимеров
- •Глава 9. Неметаллические материалы
- •9.3. Пластмассы и полимерные композиционные материалы
- •9.3.1. Состав и классификация пластмасс
- •9.3.2. Технология получения изделий из пластмасс и полимерных композиционных материалов
- •9.4. Резиновые материалы
- •9.5. Сотовые и панельные конструкции
- •9.5. Клеящие материалы
- •9.6. Лакокрасочные материалы
- •9.7. Древесные материалы
- •Глава 1 общее представление о строении металлов
- •Глава 2 диаграмма состояния железоуглеродистых сплавов
- •Глава 3 термическая обработка
- •Глава 4
- •Список литературы
- •Приложения Содержание
- •Глава 1 общее представление о строении металлов 5
- •Глава 2 диаграмма состояния железоуглеродистых сплавов 25
- •Глава 3 термическая обработка 32
- •Глава 4 61
- •Шевельков Валерий Владимирович
3.2.4. Поверхностная закалка
Как отмечалось выше, закалка повышает твердость, прочность, износостойкость стали, но снижает ее пластичность. Однако для многих деталей, работающих в условиях циклических нагрузок (валы, шестерни), требуется не только высокая износостойкость поверхности, но и высокая вязкость и пластичность внутренних слоев. Достичь этого можно применением поверхностной закалки.
Поверхностной закалкой называют процесс термической обработки, заключающийся в нагреве поверхностного слоя изделия до температуры выше Ас} для доэвтектоидных и Асх для заэвтектоидных сталей с последующим охлаждением с целью получения структуры мартенсита в поверхностном слое (рис. 3.11).
Наиболее распространены следующие методы поверхностной закалки: с индукционным нагревателем (нагрев токами высокой частоты - ТВЧ), газоплазменная поверхностная и в электролите. Все способы поверхностной закалки основаны на быстром нагреве поверхностного слоя выше точек фазовых превращений и последующем охлаждении, приводящем к тому, что слой I, нагретый выше температуры Асъ, закалится полностью, слой II - частично, а слой III останется незакаленным. В результате обеспечивается высокая прочность и износостойкость поверхностных слоев в сочетании с пластичностью и вязкостью сердцевины изделия.
Рис. 3.11. Кривые распределения температуры и твердости после закалки по сечению изделия (а) и схема индукционного нагрева (б)
Закалочные температуры для поверхностной закалки выбираются более высокими (на 100...200 °С), чем для обычной, так как при нагреве с высокими скоростями превращение перлита в аустенит происходит в области более высоких температур. Поскольку перегрев тонкого поверхностного слоя осуществляется с очень большой скоростью и выдержка при Температуре закалки отсутствует, он не приводит к ухудшению структуры за счет роста зерна аустенита. Глубина закалки составляет 1,5...15 мм и определяется условиями работы деталей. Так, детали, подвергающиеся усталостному изнашиванию, закаливаются на глубину 1,5...3 мм, при особо высоких контактных нагрузках - 10...15 мм.
Призакалке ТВЧ изделия помещают в специальный индуктор (катушку), состоящий из одного или нескольких витков медной трубки (рис. 3.11, б). Для равномерного нагрева поверхности изделий различной формы применяют индукторы, по форме и размерам соответствующие деталям. Через индуктор 1 пропускают переменный ток высокойчастоты(500...15 000 Гц). При этом вокруг индуктора возникает магнитное поле, а в детали 2 генерируются вихревые токи, которые и нагревают поверхность детали до температуры закалки, после чего следует резкое охлаждение водой и низкий отпуск.
Скорость нагрева колеблется от 100 до 1000 °С/с. Время нагрева зависит от скорости нагрева и находится в пределах 1,5...40 с. Толщина закаленного слоя зависит от частоты тока, которая определяет глубину проникновения индуцируемых в деталях вихревых токов. Закалка ТВЧ позволяет получить структуру стали с твердостью на 3...5 HRC, выше, чем при обычной закалке, с более мелким зерном (на 2...4 балла) и меньшим браком по короблению и образованию закалочных трещин. При нагреве ТВЧ не происходит окалинообразования и выгорания углерода. Кроме того, обеспечивается высокая производительность труда. Этот вид закалки используют для сталей, содержащих 0,4...0,5 % углерода (40, 45, 40Х, 45Х, 40ХН и др.), которые после закалки имеют высокие твердость (50...60 HRC3), сопротивляемость изнашиванию и не склонны к хрупкому разрушению.
Газоплазменная поверхностная закалка заключается в нагреве поверхностного слоя детали пламенем сгорающего газа, имеющего температуру 2400...3000 °С, и последующем охлаждении водой. Толщина закаленного слоя 2...4 мм, твердость 50...56 HRC3, структура состоит из мартенсита и феррита. Применяется газоплазменная закалка в основном для крупных изделий, таких как коленчатые валы особо мощных двигателей, прокатные валы и т. п. При этом в крупных деталях создаются меньшие напряжения, чем при обычной объемной закалке.
Закалка в электролите основана на том, что при пропускании тока через электролит (5...10%-ный раствор кальцинированной соды) на катоде, которым является закаливаемая деталь, образуется газовая рубашка водорода. Ток при этом сильно возрастает и деталь нагревается, после чего, отключив ток, можно сразу закалить ее в том же электролите. Способ применяется для закалки небольших деталей в условиях массового производства. .