
- •Часть 2
- •Правила по технике безопасности
- •Лабораторная работа «окислительно-восстановительные реакции»
- •1. Теоретическая часть
- •1.1. Электроотрицательность элементов и образование химической связи
- •1.2. Основные положения теории окисления-восстановления
- •1.3. Правила определения степени окисления
- •1.4. Важнейшие восстановители и окислители
- •1.5. Изменение окислительно-восстановительных свойств простых веществ по периодам и группам
- •1.6. Типы окислительно-восстановительных реакций
- •1.7. Нахождение коэффициентов в уравнениях окислительно-восстановительных реакций
- •1.8. Направление и полнота протекания окислительно-восстановительных реакций
- •2. Экспериментальная часть
- •Контрольные вопросы
- •Лабораторная работа «гальванический элемент»
- •1. Теоретическая часть
- •1.1. Электрохимический ряд напряжений
- •1.2. Стандартные электродные потенциалы
- •1.3. Устройство и принцип работы гальванического элемента
- •1.4. Уравнение электродного потенциала (уравнение Нернста)
- •1.5. Поляризационные явления в гальванических элементах
- •2. Экспериментальная часть
- •Контрольные вопросы
- •Лабораторная работа «электролиз»
- •1. Теоретическая часть
- •1.1. Сущность электролиза
- •1.2. Электролиз расплава
- •1.3. Электролиз водных растворов
- •1.4. Законы Фарадея (законы электролиза)
- •1.5. Примеры решения задач
- •2. Экспериментальная часть
- •Контрольные вопросы
- •Лабораторная работа «коррозия металлов»
- •1. Теоретическая часть
- •1.1. Общие положения
- •1.2. Основные типы коррозии металлов
- •1.3. Классификация коррозионных процессов
- •1.3.1. Химическая коррозия
- •1.3.2. Электрохимическая коррозия
- •2. Экспериментальная часть
- •Контрольные вопросы
- •Лабораторная работа «защита от коррозии»
- •1. Теоретическая часть
- •1.1. Электрохимические методы
- •1.2. Методы, связанные с изменением свойств корродирущего металла
- •1.2.1. Методы изоляции металла от окружающей среды
- •1.2.2. Легирование металлов и сплавов
- •1.3. Методы, связанные с изменением свойств коррозионной среды
- •1.4. Комбинированные методы защиты
- •2. Экспериментальная часть
- •Контрольные вопросы
- •Лабораторная работа «коллоидные растворы»
- •1. Теоретическая часть
- •1.1. Коллоидные растворы как дисперсные системы
- •1.2. Получение коллоидных систем
- •1.2.1. Методы диспергирования
- •1.2.2. Методы конденсации
- •1.3. Строение мицелл золей
- •1.4. Явление коагуляции
- •1.5. Примеры решения задач
- •2. Экспериментальная часть
- •Контрольное задание
- •Контрольные вопросы
- •Лабораторная работа «жесткость воды. Методы умягчения и определения жесткости»
- •1. Теоретическая часть
- •1.1. Жёсткость воды
- •1.1.1. Компоненты и виды жёсткости
- •1.1.2. Действие жёсткости
- •1.1.3. Единицы измерения жёсткости
- •1.2. Умягчение воды методами осаждения
- •1.2.1. Термический метод
- •1.2.2. Реагентные методы
- •1.3. Метод ионного обмена
- •1.3.1. Иониты и процессы ионного обмена
- •1.3.2. Обессоливание воды методом ионного обмена
- •1.3.3. Умягчение воды методом ионного обмена
- •1.4. Определение жёсткости воды
- •1.4.1. Титриметрический метод анализа
- •1.4.2. Определение карбонатной жёсткости воды
- •1.4.3. Определение общей жёсткости воды
- •2. Экспериментальная часть
- •Контрольное задание
- •Контрольные вопросы
- •Список рекомендуемой литературы Основная
- •Дополнительная
- •Часть 2
- •400074, Волгоград, ул. Академическая, 1
- •В двух частях
- •Часть 2 Волгоград 2010
Контрольные вопросы
Определение и особенности дисперсных систем, основные термины и понятия. Классификация дисперсных систем. Примеры систем с различным агрегатным состоянием.
Условия получения и существования коллоидных систем. Различные методы получения коллоидных систем.
Правило Пескова—Фаянса. Строение мицеллы золя; двойной электрический слой.
Явление коагуляции. Факторы коагуляции. Механизм действия коагуляции при нагревании и коагуляции электролитами.
Порог коагуляции.
Правила коагуляции Шульце—Гарди.
Лабораторная работа «жесткость воды. Методы умягчения и определения жесткости»
Цель работы: экспериментальное определение карбонатной и общей жёсткости природной (водопроводной) воды.
1. Теоретическая часть
1.1. Жёсткость воды
1.1.1. Компоненты и виды жёсткости
Природная пресная вода, которая широко используется в технологических процессах, в качестве питьевой воды и для хозяйственно-бытовых нужд, находится в непрерывном взаимодействии с окружающей средой. Она реагирует с компонентами атмосферы, почвы, растений, с минералами и различными породами, растворяя различные органические и неорганические соединения. Состав природных вод является результатом этих взаимодействий.
В наибольшем количестве в природной воде содержатся:
— катионы: ионы металлов натрия Na+, калия K+, кальция Ca2+ и магния Mg2+;
— анионы: карбонат-ионы CO32–, гидрокарбонат-ионы HCO3–, сульфат-ионы SO42–, хлорид-ионы Cl–;
— растворенные газы атмосферного воздуха — углекислый газ CO2 и кислород O2.
Практически все соли натрия и калия хорошо растворимы в воде, в т.ч. и те, которые натрий и калий образуют в сочетании с вышеперечисленными анионами. Изменение температуры воды, её солевого состава, величины pH, концентрации CO2 в атмосфере не приводят к каким-либо химическим процессам, связанным с присутствием ионов натрия и калия.
Напротив, многие соли кальция и магния ограниченно растворимы, и в результате изменения температуры, pH, давления CO2, внесения реагентов растворенные до того ионы кальция и магния могут образовывать осадок. Поэтому наличие ионов Ca2+ и Mg2+ является одной из важнейших характеристик природной воды. Присутствие указанных ионов в воде принято обозначать термином жёсткость воды. Соответственно, вода, которая не содержит соли кальция и магния или содержит в очень незначительных количествах, характеризуется как мягкая вода.
Ионы Ca2+ и Mg2+ появляются в природных водах в результате взаимодействия их с известняками (CaCO3), доломитами (CaCO3∙MgCO3), гипсом CaSO4. В отличие от случая взаимодействия воды с гипсом, переход кальция и магния в раствор из карбонатных пород (известняков и доломитов) является результатом не простого растворения солей, а химического процесса при участии углекислого газа, которым насыщена вода водоемов (CO2 из атмосферы) и почва (CO2 появляется в ходе разложения органических компонентов). При этом малорастворимые карбонаты переходят в растворимые гидрокарбонаты по реакциям:
CaCO3 + CO2 + H2O = Ca(HCO3)2 ;
MgCO3 + CO2 + H2O = Mg(HCO3)2 .
Суммарное содержание ионов кальция и магния определяет общую жёсткость воды. Поскольку каждый из этих ионов входит в состав разных солей, то в суммарной величине общей жёсткости различают различные виды жёсткости. Деление можно провести по трем критериям:
1. По катиону
— кальциевая жёсткость, связанная с присутствием солей Ca;
— магниевая жёсткость, связанная с присутствием солей Mg.
2. По анионам, образующим соли, придающие воде жёсткость:
— карбонатная жёсткость; обусловлена содержанием в воде карбонатов и гидрокарбонатов кальция и магния CaCO3, MgCO3, Ca(HCO3)2, Mg(HCO3)2;
— некарбонатная жёсткость; обусловлена содержанием в воде сульфатов и хлоридов кальция и магния CaSO4, MgSO4, CaCl, MgCl, т.е. растворимых солей сильных кислот.
3. По способу устранения жёсткости
— временная жёсткость — часть общей жёсткости, удаляемая кипячением воды при атмосферном давлении в течение 1 часа. Эта жёсткость может быть названа также гидрокарбонатной, поскольку обусловлена присутствием гидрокарбонатов кальция и магния, которые при кипячении переходят в малорастворимые
карбонаты кальция и магния согласно уравнениям реакций:
Ca(HCO3)2 = CaCO3↓ + CO2↑ + H2O ;
Mg(HCO3)2 = MgCO3↓ + CO2↑ + H2O.
При этом бо́льшая часть кальция и магния, содержавшаяся в гидрокарбонатах, уходит из раствора в виде осадков, но небольшая часть кальция и магния остается в растворе, так как осажденные карбонаты обладают некоторой растворимостью в воде (CaCO3 — 13 мг/л; MgCO3 — 110 мг/л), хотя и намного меньшей, чем гидрокарбонаты, из которых они образовались. Та часть карбонатной жёсткости, которая остается после кипячения воды и удаления тем самым гидрокарбонатной жёсткости, называется остаточной карбонатной жёсткостью.
— постоянная жёсткость — часть общей жёсткости, остающаяся после кипячения воды; эта жёсткость обусловлена присутствием карбонатов, сульфатов и хлоридов кальция и магния. Таким образом, постоянная жёсткость равна разности между общей и временной. С другой стороны, постоянная жёсткость равна сумме некарбонатной жёсткости и остаточной карбонатной.