
- •Часть 2
- •Правила по технике безопасности
- •Лабораторная работа «окислительно-восстановительные реакции»
- •1. Теоретическая часть
- •1.1. Электроотрицательность элементов и образование химической связи
- •1.2. Основные положения теории окисления-восстановления
- •1.3. Правила определения степени окисления
- •1.4. Важнейшие восстановители и окислители
- •1.5. Изменение окислительно-восстановительных свойств простых веществ по периодам и группам
- •1.6. Типы окислительно-восстановительных реакций
- •1.7. Нахождение коэффициентов в уравнениях окислительно-восстановительных реакций
- •1.8. Направление и полнота протекания окислительно-восстановительных реакций
- •2. Экспериментальная часть
- •Контрольные вопросы
- •Лабораторная работа «гальванический элемент»
- •1. Теоретическая часть
- •1.1. Электрохимический ряд напряжений
- •1.2. Стандартные электродные потенциалы
- •1.3. Устройство и принцип работы гальванического элемента
- •1.4. Уравнение электродного потенциала (уравнение Нернста)
- •1.5. Поляризационные явления в гальванических элементах
- •2. Экспериментальная часть
- •Контрольные вопросы
- •Лабораторная работа «электролиз»
- •1. Теоретическая часть
- •1.1. Сущность электролиза
- •1.2. Электролиз расплава
- •1.3. Электролиз водных растворов
- •1.4. Законы Фарадея (законы электролиза)
- •1.5. Примеры решения задач
- •2. Экспериментальная часть
- •Контрольные вопросы
- •Лабораторная работа «коррозия металлов»
- •1. Теоретическая часть
- •1.1. Общие положения
- •1.2. Основные типы коррозии металлов
- •1.3. Классификация коррозионных процессов
- •1.3.1. Химическая коррозия
- •1.3.2. Электрохимическая коррозия
- •2. Экспериментальная часть
- •Контрольные вопросы
- •Лабораторная работа «защита от коррозии»
- •1. Теоретическая часть
- •1.1. Электрохимические методы
- •1.2. Методы, связанные с изменением свойств корродирущего металла
- •1.2.1. Методы изоляции металла от окружающей среды
- •1.2.2. Легирование металлов и сплавов
- •1.3. Методы, связанные с изменением свойств коррозионной среды
- •1.4. Комбинированные методы защиты
- •2. Экспериментальная часть
- •Контрольные вопросы
- •Лабораторная работа «коллоидные растворы»
- •1. Теоретическая часть
- •1.1. Коллоидные растворы как дисперсные системы
- •1.2. Получение коллоидных систем
- •1.2.1. Методы диспергирования
- •1.2.2. Методы конденсации
- •1.3. Строение мицелл золей
- •1.4. Явление коагуляции
- •1.5. Примеры решения задач
- •2. Экспериментальная часть
- •Контрольное задание
- •Контрольные вопросы
- •Лабораторная работа «жесткость воды. Методы умягчения и определения жесткости»
- •1. Теоретическая часть
- •1.1. Жёсткость воды
- •1.1.1. Компоненты и виды жёсткости
- •1.1.2. Действие жёсткости
- •1.1.3. Единицы измерения жёсткости
- •1.2. Умягчение воды методами осаждения
- •1.2.1. Термический метод
- •1.2.2. Реагентные методы
- •1.3. Метод ионного обмена
- •1.3.1. Иониты и процессы ионного обмена
- •1.3.2. Обессоливание воды методом ионного обмена
- •1.3.3. Умягчение воды методом ионного обмена
- •1.4. Определение жёсткости воды
- •1.4.1. Титриметрический метод анализа
- •1.4.2. Определение карбонатной жёсткости воды
- •1.4.3. Определение общей жёсткости воды
- •2. Экспериментальная часть
- •Контрольное задание
- •Контрольные вопросы
- •Список рекомендуемой литературы Основная
- •Дополнительная
- •Часть 2
- •400074, Волгоград, ул. Академическая, 1
- •В двух частях
- •Часть 2 Волгоград 2010
1.2.2. Легирование металлов и сплавов
Легирование металлов сводится к изменению состава металла введением в него специальных легирующих добавок (лат. ligare — связывать, соединять). Подобные добавки подбирают с таким расчетом, чтобы при их помощи повысить коррозионную стойкость основного металла. В качестве таких компонентов применяют хром, никель, вольфрам и др.; в результате получают различные марки нержавеющей стали, характеризующиеся высокой стойкостью к коррозии в атмосфере и в агрессивных средах.
Широкое применение нашло легирование для защиты от газовой коррозии. При этом получают сплавы, обладающие жаростойкостью и жаропрочностью.
Жаростойкость — стойкость по отношению к газовой коррозии при высоких температурах. Жаропрочность — свойство конструкционного материала сохранять высокую механическую прочность при значительном повышении температуры.
Жаростойкость стали достигается введением в нее таких элементов, как хром, алюминий, кремний. Эти элементы при высоких температурах окисляются энергичнее, чем железо, и образуют при этом плотные защитные пленки оксидов. Хром и кремний улучшают также жаропрочность сталей.
1.3. Методы, связанные с изменением свойств коррозионной среды
В пресных и нейтральных солевых водах основным компонентом, который вызывает коррозию, является растворенный кислород — один из самых коррозионно активных компонентов. С целью предотвращения коррозии необходимо уменьшить содержание кислорода, что может быть достигнуто процессом деаэрации воды. Например, такой очистке от кислорода подвергают воду, питающую котельные установки и др. Деаэрация достигается кипячением, дистилляцией или барботажем инертного газа.
Для замедления коррозии металлических изделий в агрессивную среду вводят вещества (чаще всего органические), называемые ингибиторами. Их добавление в коррозионную среду приводит к уменьшению скорости коррозионного процесса.
Тормозящее действие ингибиторов связано определяется разнообразными факторами, например, 1) окислением поверхности металла; 2) образованием защитных пленок, состоящих из продуктов взаимодействия ингибитора с раствором или из продуктов взаимодействия ингибитора с металлом; 3) повышением перенапряжения катодного выделенного водорода.
1.4. Комбинированные методы защиты
Результативный эффект при использовании комбинированных методов очень высок. Примером комбинированного метода защиты может служить, например, защита трубопровода. Вначале трубопровод подвергают обмотке изоляционным материалом, затем обмазке битумом или покраске, в которые вводят ингибиторы коррозии и т.п.
2. Экспериментальная часть
Содержание работы:
1. После ознакомления с теоретическим материалом выполнить опыты и записать наблюдения.
2. Во всех опытах записать происходящую окислительно-восстановительную реакцию и процессы окисления и восстановления. Во втором и третьем опытах составить схему образующихся гальванических элементов (гальванопар).
Опыт 1. Определение специфичности действия ингибиторов
Три пробирки вставить в штатив. В одну поместить цинковую пластинку, в другую — железную, в третью — алюминиевую. Налить в каждую пробирку до трети объема 1 н. раствор соляной кислоты. Наблюдать за протеканием реакции. Если в какой-либо пробирке реакция протекает медленно, нагреть ее на пламени газовой горелки. Когда выделение водорода во всех пробирках станет интенсивным, налить в каждую из них небольшое (0,5-1,0 мл), примерно равное количество раствора уротропина. Отметить, в каких пробирках произошло замедление реакции. Сделать вывод, во всех ли случаях уротропин является эффективным ингибитором.
Опыт 2. Электрохимическая защита
В стакан налить разбавленную уксусную кислоту, добавить 0,5-1 мл раствора иодида калия. Отлить половину содержимого в другой стакан. В первый стакан поместить гранулу свинца, во второй — свинец и цинк в контакте друг с другом. Отметить, где скорее появится желтое окрашивание (иодистый свинец желто-золотистого цвета). Составить схему гальванопары с учетом того, что коррозия происходит в кислой среде, записать катодный и анодный процессы и вторичную реакцию, приводящую к изменению окраски. Сделать вывод по наблюдаемым явлениям.
Опыт 3. Анодные и катодные покрытия
В стакан налить 3%-ный раствор хлорида натрия, к которому добавить несколько капель гексацианоферрата (III) калия K3[Fe(CN)6]. Отлить половину содержимого в другой стакан. В первый стакан поместить кусочек оцинкованного железа, во второй — луженого железа, предварительно сделав на их поверхности в нескольких местах глубокие надрезы гвоздем. Отметить, какой образец подвергается коррозии. Результаты опыта объяснить, написать уравнения всех протекающих реакций, составить схемы гальванопар.