
- •Содержание
- •Введение
- •1 Моделирование прочностной надежности элементов конструкций
- •1.1 Основные понятия сопротивления материалов
- •1.2 Геометрические характеристики плоских сечений
- •2 Растяжение и сжатие
- •2.1 Внутренние усилия и напряжения при растяжении (сжатии)
- •2.2 Перемещения и деформации при растяжении (сжатии)
- •2.3 Расчеты на прочность и жесткость при растяжении (сжатии)
- •3 Механические свойства материалов
- •3.1 Методика проведения испытаний
- •3.2 Диаграмма растяжения низкоуглеродистой стали
- •3.3 Диаграмма низколегированной стали
- •3.4 Диаграмма растяжения чугуна
- •3.5 Допускаемые напряжения
- •3.6 Основы теории напряженного состояния
- •3.7 Теории прочности
- •3.7.5 Теория Мора
- •4 Сдвиг
- •4.1 Определение внутренних усилий и напряжений при сдвиге
- •4.2 Напряженное состояние при сдвиге
- •4.3 Деформации при сдвиге
- •4.4 Расчет на прочность и допускаемые напряжения при сдвиге
- •5 Кручение
- •5.1 Определение внутренних усилий при кручении
- •5.2 Определение напряжений и деформаций при кручении
- •5.3 Напряженное состояние и виды разрушения при кручении
- •5.4 Расчеты на прочность и жесткость при кручении
- •6 Изгиб
- •6.1 Общие понятия и определения
- •6.2 Определение внутренних усилий при изгибе
- •6.3 Дифференциальные зависимости при изгибе
- •6.4 Нормальные напряжения при чистом изгибе прямого бруса
- •1) Гипотеза плоских сечений (гипотеза Бернулли).
- •6.5 Касательные напряжения при поперечном изгибе прямого бруса
- •6.6 Полная проверка прочности. Опасные сечения и опасные точки
- •7. Сложное сопротивление
- •7.1. Косой изгиб. Общие понятия о косом изгибе
- •7.2. Определение напряжений при косом изгибе
- •7.3 Определение положения нейтральной оси и максимальных нормальных напряжений при косом изгибе. Условие прочности
- •7.4. Изгиб с кручением. Определение внутренних усилий и напряжений
- •7.5. Определение главных напряжений и расчет на прочность при кручении с изгибом
- •8. Устойчивость сжатых стержней
- •8.1 Понятие об устойчивости и критической силе
- •8.2 Устойчивость сжатого стержня. Задача Эйлера
- •8.3. Зависимость критической силы от условий закрепления стержня
- •8.4. Критические напряжения. Расчет на устойчивость стержня при упруго-пластических деформациях
- •8.5 Определение допускаемых напряжений на устойчивость. Коэффициент снижения основного допускаемого напряжения
- •8.6 Выбор материала и рациональной формы сечения при продольном изгибе
- •9 Прочность материалов при циклически меняющихся напряжениях
- •9.1 Основные понятия и определения
- •9.2 Виды циклов нагружения
- •9.3. Кривая усталости (кривая Веллера)
- •9.4 Предел выносливости при асимметричном цикле
- •Список литературы
8.2 Устойчивость сжатого стержня. Задача Эйлера
П Р
Рассмотрим шарнирно опертый по концам стержень, сжатый продольной силой Р. Допустим, что по какой-то причине стержень получил малое искривление оси, вследствие чего в нем появился изгибающий момент M:
,
(8.3)
где y – прогиб стержня в произвольном сечении с координатой x.
Для определения критической силы можно воспользоваться приближенным дифференциальным уравнением упругой линии:
,
(8.4)
где E – модуль Юнга; J – осевой момент инерции сечения стержня относительно оси z в данном случае; E·J – жесткость стержня при изгибе. Знаки левой и правой части согласованны в данной системе координат.
Проведя преобразования, можно увидеть, что минимальное значение критическая сила примет при n = 1 (на длине стержня укладывается одна полуволна синусоиды) и J = Jmin (стержень искривляется относительно оси с наименьшим моментом инерции)
(8.5)
Это выражение обычно называют формулой Эйлера, а определяемую с ее помощью критическую силу – эйлеровой силой.
8.3. Зависимость критической силы от условий закрепления стержня
Формула Эйлера была получена для основного случая – шарнирного опирания стержня по концам (рис.8.3). На практике встречаются и другие случаи закрепления стержня. При этом можно получить формулу для определения критической силы для каждого из этих случаев, решая, как в предыдущем параграфе, дифференциальное уравнение изогнутой оси балки с соответствующими граничными условиями. Но можно использовать и более простой прием, если вспомнить, что, при потере устойчивости на длине стержня должна укладываться одна полуволна синусоиды.
Рассмотрим некоторые характерные случаи закрепления стержня по концам и получим общую формулу для различных видов закрепления.
1. Стержень длиной l закреплен в жесткой заделке и сжат продольной силой (рис.8.4,а). Из сравнения вида изогнутой оси балки для рассматриваемого и основного случаев можем сделать вывод, что ось стержня, защемленного одним концом, находится в тех же условиях, как и верхняя половина шарнирно опертого стержня длиной 2·l. Таким образом, критическая сила для стержня длиной l с одним защемленным концом может быть найдена так же, как и для шарнирно опертой балки длиной 2·l, то есть
.
(8.6)
Ркр= Ркр Ркр= Ркр Ркр= Ркр
2. Стержень длиной l, у которого оба конца жестко защемлены (рис.8.4,б). Средняя часть стержня, с двумя жестко защемленными концами находится в тех же условиях, что и шарнирно опертая балка длиной l/2. Таким образом, критическая сила для стержня длиной l с двумя защемленными концами может быть определена так же, как и для шарнирно опертой балки длиной l/2, то есть
. (8.7)
3. Стержень длиной l, у которого один конец жестко заделан, а другой шарнирно оперт (рис.8.4,в). Критическая сила для стержня длиной l с защемленным и шарнирно опертым концами может быть определена так же как и для шарнирно опертой балки длиной 0,7·l, то есть
. (8.8)
Все полученные решения можно объединить в одну общую формулу
,
(8.9)
где
·l
= lпр
– приведенная длина стержня; l
– фактическая длина стержня;
–
коэффициент приведенной длины,
показывающий во сколько раз необходимо
изменить длину стержня, чтобы критическая
сила для этого стержня стала равна
критической силе для шарнирно опертой
балки. (Другая интерпретация коэффициента
приведенной длины:
показывает, на какой части длины стержня
для данного вида закрепления укладывается
одна полуволна синусоиды при потере
устойчивости.)