
- •Содержание
- •Введение
- •1 Моделирование прочностной надежности элементов конструкций
- •1.1 Основные понятия сопротивления материалов
- •1.2 Геометрические характеристики плоских сечений
- •2 Растяжение и сжатие
- •2.1 Внутренние усилия и напряжения при растяжении (сжатии)
- •2.2 Перемещения и деформации при растяжении (сжатии)
- •2.3 Расчеты на прочность и жесткость при растяжении (сжатии)
- •3 Механические свойства материалов
- •3.1 Методика проведения испытаний
- •3.2 Диаграмма растяжения низкоуглеродистой стали
- •3.3 Диаграмма низколегированной стали
- •3.4 Диаграмма растяжения чугуна
- •3.5 Допускаемые напряжения
- •3.6 Основы теории напряженного состояния
- •3.7 Теории прочности
- •3.7.5 Теория Мора
- •4 Сдвиг
- •4.1 Определение внутренних усилий и напряжений при сдвиге
- •4.2 Напряженное состояние при сдвиге
- •4.3 Деформации при сдвиге
- •4.4 Расчет на прочность и допускаемые напряжения при сдвиге
- •5 Кручение
- •5.1 Определение внутренних усилий при кручении
- •5.2 Определение напряжений и деформаций при кручении
- •5.3 Напряженное состояние и виды разрушения при кручении
- •5.4 Расчеты на прочность и жесткость при кручении
- •6 Изгиб
- •6.1 Общие понятия и определения
- •6.2 Определение внутренних усилий при изгибе
- •6.3 Дифференциальные зависимости при изгибе
- •6.4 Нормальные напряжения при чистом изгибе прямого бруса
- •1) Гипотеза плоских сечений (гипотеза Бернулли).
- •6.5 Касательные напряжения при поперечном изгибе прямого бруса
- •6.6 Полная проверка прочности. Опасные сечения и опасные точки
- •7. Сложное сопротивление
- •7.1. Косой изгиб. Общие понятия о косом изгибе
- •7.2. Определение напряжений при косом изгибе
- •7.3 Определение положения нейтральной оси и максимальных нормальных напряжений при косом изгибе. Условие прочности
- •7.4. Изгиб с кручением. Определение внутренних усилий и напряжений
- •7.5. Определение главных напряжений и расчет на прочность при кручении с изгибом
- •8. Устойчивость сжатых стержней
- •8.1 Понятие об устойчивости и критической силе
- •8.2 Устойчивость сжатого стержня. Задача Эйлера
- •8.3. Зависимость критической силы от условий закрепления стержня
- •8.4. Критические напряжения. Расчет на устойчивость стержня при упруго-пластических деформациях
- •8.5 Определение допускаемых напряжений на устойчивость. Коэффициент снижения основного допускаемого напряжения
- •8.6 Выбор материала и рациональной формы сечения при продольном изгибе
- •9 Прочность материалов при циклически меняющихся напряжениях
- •9.1 Основные понятия и определения
- •9.2 Виды циклов нагружения
- •9.3. Кривая усталости (кривая Веллера)
- •9.4 Предел выносливости при асимметричном цикле
- •Список литературы
7.3 Определение положения нейтральной оси и максимальных нормальных напряжений при косом изгибе. Условие прочности
Нейтральная ось – линия, во всех точках которой нормальные напряжения равны нулю. При этом в точках сечения, наиболее удаленных от нейтральной оси нормальные напряжения принимают свои экстремальные значения – минимум и максимум.
Рис.7.7.
Положение нейтральной оси
Так
как
=0,
то можем записать:
Отсюда найдем уравнение нейтральной оси:
(7.10)
Более
удобно записать это уравнение через
угол
наклона нейтральной линии к осиOz:
(7.11)
Знак
«минус» в этой формуле показывает, что
углы
и
откладываются от разноименных осей, но
в одном направлении.
Как видим, в случае,
когда Jz
≠ Jy,
углы
и
не равны друг другу, а, значит, и плоскость
кривизны (плоскость максимальных
прогибов) бруса не будет совпадать с
плоскостью действия сил. Поэтому такой
изгиб и назван «косым».
Определим максимальные нормальные напряжения при косом изгибе и запишем условие прочности.
Как известно, нормальные напряжения достигают своих экстремальных значений в точках, наиболее удаленных от нейтральной оси (координаты таких точек обозначим ymax и zmax):
,
или
(7.12)
Для прямоугольного
сечения – это точки A
и B.
При M>0
(см. рис.7.8).
Для материалов, одинаково сопротивляющихся растяжению (сжатию), максимальные напряжения определяются так:
,
или
,
(7.13)
где
и
– моменты сопротивления сечения
относительно осейz
и y.
В случае косого изгиба, как правило, проверка прочности осуществляется только по нор-мальным напряжениям (действие касательных невелико). Поэтому условие прочности записывается в виде:
(7.14)
При косом изгибе (впрочем, как и при остальных видах нагружения) имеем три задачи расчета на прочность:
- проверка прочности;
- подбор сечения (определить Wz (размеры сечения) при заданном отношении Wz/Wy);
- проверка по несущей способности (определить M).
7.4. Изгиб с кручением. Определение внутренних усилий и напряжений
Ранее нами был рассмотрен расчет на прочность валов при чистом кручении. Однако круглые валы редко работают на чистое кручение. Как правило, при работе вал изгибается собственным весом, весом шкивов, давлением на зубья шестерен, натяжением ремней и т. д. В таком случае вал будет находиться в условиях сложного сопротивления и испытывать совместное действие кручения и изгиба.
Изгиб с кручением – частный случай сложного сопротивления, который может рассматриваться как сочетание чистого кручения и поперечного изгиба.
P1 P2 P3 Рис.7.9.
Изгиб с кручением P
(7.15)
Обычно две составляющие попе-речной силы (Qy, Qz) и изгибающего момента (My, Mz) приводят к их полным результирующим
(7.16)
Заметим, что часто поперечной силой пренебрегают (для достаточно длинных валов) и рассматривают кручение с изгибом как совместное действие крутящего (Mx, Mкр, T) и изгибающего (Mи) моментов.
Опасное сечение вала будем искать, как и прежде, по эпюрам внутренних усилий. При построении эпюр внутренних усилий при кручении с изгибом необходимо иметь ввиду следующие правила:
- эпюры крутящего момента Mx, а также эпюры составляющих поперечной силы Qy, Qz и изгибающего момента My, Mz строятся с использованием метода сечений;
- результирующая поперечная сила Q может не лежать в плоскости действия результирующего изгибающего момента Mи, а потому между ними уже не будет соблюдаться зависимость Журавского (dM/dx=Q), а, следовательно, и правила проверки эпюр, введенные для плоского изгиба;
- эпюра полного изгибающего момента будет прямой только на тех участках, где My и Mz ограничены прямыми с общей нулевой точкой, на участках, где такая общая точка отсутствует эпюра Mи будет описываться вогнутой кривой и строится по точкам (связано с тем, что вектор Mи в разных сечениях имеет различное направление).
Опасное сечение при кручении с изгибом устанавливается из совместного анализа эпюр крутящего Mx и полного изгибающего Mи моментов. Опасным будет считаться то сечение, где оба момента достигают своей максимальной величины. Если моменты достигают максимума в разных сечениях, необходимо проверить все сечения, в которых эти внутренние усилия достаточно велики.
напряжения при кручении
,
(7.17)
;
(7.18)
Рис.7.10.
Напряжения
,
или
,
(7.19)
где Jос – осевой момент инерции для круглого сечения (Jос = Jz = Jy).
Вводя обозначение
,
можем записать
,
(7.20)
при этом
, (7.21)
где
Wос
– осевой момент сопро-тивления для
круглого сечения (Wос=Jос/max,
max=d/2).
Рис.7.11.
Напряженное состояние
в опасной точке