
- •Московский государственный университет прикладной биотехнологии
- •Лабораторный практикум по физике
- •Введение
- •4Ая страница
- •Раздел I. Термодинамика. Молекулярно-кинетические явления переноса.
- •Определение показателя адиабаты методом клемана-дезорма
- •I.Описание установки.
- •II. Методика работы
- •III. Порядок выполнения работы
- •IV. Обработка результатов измерений
- •V. Вывод:
- •Контрольные вопросы
- •Определение коэффициента вязкости жидкости по методу стокса
- •I. Описание установки. Приборы и принадлежности.
- •II. Методика работы.
- •III. Порядок измерений и таблица результатов.
- •IV. Обработка результатов измерений.
- •V. Вывод:
- •Определение коэффициента вязкости воздуха капиллярным методом (методом Пуазейля)
- •I. Описание установки:
- •II. Методика работы.
- •III. Порядок измерений.
- •IV. Обработка результатов измерений
- •Литература
- •Раздел II. Колебания. Волны.
- •Исследование затухающих и вынужденных колебаний
- •Упражнение 1
- •Порядок выполнения работы
- •Упражнение 2
- •I. Методика работы
- •II. Описание установки.
- •III. Порядок выполнения работы
- •IV. Обработка результатов измерений
- •V. Выводы к упражнению 2:
- •Лабораторная работа № 5 (1-11) определение скорости звука в твердых телах методом кундта
- •I. Описание установки.
- •II. Методика работы.
- •III. Порядок выполнения работы
- •IV. Обработка результатов измерений
- •Контрольные вопросы
- •Литература
- •Вопросы для защиты в форме круглого стола
- •Раздел III. Электростатика. Постоянный ток
- •Лабораторная работа № 6 (2-4) определение емкости конденсатора баллистическим гальванометром
- •Упражнение 1.
- •III. Порядок выполнения работы
- •Упражнение 2.
- •Порядок выполнения работы
- •Контрольные вопросы.
- •Лабораторная работа № 7 (2-1) измерение сопротивлений при помощи моста уитстона
- •Из формулы сопротивления для однородного проводника
- •Или, в зависимости от знака х, наоборот:
- •III. Порядок выполнения работы
- •Контрольные вопросы
- •Литература
- •Вопросы для защиты в форме круглого стола
- •Раздел IV. Электромагнетизм
- •Определение горизонтальной составляющей вектора индукции магнитного поля земли
- •I. Описание установки.
- •II. Методика работы.
- •III. Порядок выполнения работы
- •IV. Обработка результатов измерений
- •V. Вывод:
- •Контрольные вопросы
- •Лабораторная работа № 9 (2-15) определение кривой намагничиваия железа
- •I. Описание установки.
- •III. Порядок выполнения работы
- •IV. Обработка результатов измерений
- •Контрольные вопросы
- •Литература
- •Вопросы для защиты в форме круглого стола
- •Раздел V. Волновая оптика
- •Изучение явления интерференции света от двух когерентных источников (опыт Юнга)
- •III. Порядок выполнения работы
- •Контрольные вопросы.
- •Определение длин волн в спектре с помощью дифракционной решетки
- •I. Описание установки.
- •II. Методика работы.
- •III. Порядок выполнения работы
- •IV. Обработка результатов.
- •Контрольные вопросы
- •Изучение закона малюса
- •I. Описание установки.
- •II. Методика работы.
- •III. Порядок выполнения работы.
- •IV. Обработка результатов.
- •Контрольные вопросы
- •II. Методика работы.
- •Порядок выполнения работы
- •IV. Обработка результатов.
- •Контрольные вопросы.
- •Литература
- •Вопросы для защиты в форме круглого стола
- •Раздел VI. Квантовая оптика
- •Определение температуры нити накаливания с помощью яркостного пирометра
- •I. Описание установки.
- •II. Методика работы.
- •III. Порядок выполнения работы
- •IV. Обработка результатов.
- •Дополнительное задание.
- •Контрольные вопросы
- •Лабораторная работа № 14 (3-19) изучение фотоэлемента с внешним фотоэффектом
- •I. Описание установки
- •II. Методика работы
- •III. Порядок выполнения работы
- •Снятие вольтамперной характеристики
- •Снятие световой характеристики
- •Дополнительное задание
- •Контрольные вопросы
- •Ознакомление с работой газового лазера
- •Контрольные вопросы.
- •Литература
- •Вопросы для защиты в форме круглого стола
- •Приложение I. Погрешности прямых и косвенных измерений
- •2.Абсолютная и относительная погрешности
- •3.Доверительные границы. Доверительная вероятность (коэффициент надежности)
- •4.Задача обработки результатов наблюдений
- •5. Систематические и случайные погрешности
- •6. Однократные и многократные измерения а. Однократные измерения
- •Б. Многократные измерения
- •В. Сложение погрешностей
- •7.Обработка результатов прямых многократных наблюдений
- •А. Порядок операций при обработке результатов прямых многократных измерений
- •Б. Пример обработки результатов прямых многократных измерений
- •8. Обработка результатов косвенных измерений
- •А. Метод частных дифференциалов
- •Б. Метод дифференциала логарифма
- •В. Порядок операций при обработке результатов косвенных измерений
- •2. Округление погрешностей
- •3. Правила построения графиков экспериментальных зависимостей
II. Методика работы.
Одним из наиболее распространенных приборов для получения спектров является дифракционная решетка. Простейшая оптическая дифракционная решетка представляет собой стеклянную пластинку, на которой с помощью делительной машины нанесен ряд параллельных штрихов. Штрихи служат непрозрачными промежутками, разделяющими прозрачные участки, называемые щелями. У дифракционной решетки все щели имеют одинаковую ширину а , непрозрачные промежутки между ними – ширину в. Сумму а + в = d называют периодом или постоянной решетки. В зависимости от положения точки наблюдения (здесь угла φ), в щели а может укладываться четное либо нечетное количество зон Френеля; тогда в этой точке после прохождения света через щель будет наблюдаться соответственно дифракционный минимум или максимум. Если число зон равно 2k – четное, то такие углы наблюдения определяют условие главных минимумов дифракционной решетки:
.
(10.1)
Однако, определяющим принципом в работе дифракционной решетки является не дифракция на щели а, но интерференция многих пучков, идущих через отверстия, расположенные на расстояниях, кратных d – периоду решетки. Схематическое изображение хода двух соседних лучей при прохождении через дифракционную решетку дано на рис. 10.3.
Рис.10.3. Схема интерференции от двух соседних лучей.
Разность хода для любых двух соседних лучей, наблюдаемых под углом φ, равна:
,
(10.2)
что является условием наблюдения главных максимумов дифракционной решетки. Интерференция от соседних лучей дает также дополнительные минимумы:
.
(10.3)
Если на дифракционную решетку будет падать немонохроматический свет, то дифракционные максимумы для волн разного цвета так же, как и при дифракции от одной щели, пространственно разойдутся. Центральные максимумы (m = 0, φ = 0) для всех длин волн совпадут, но уже максимумы первого порядка (m = 1) будут для фиолетовых лучей расположены ближе к центру, чем для красных. Из уравнения (10.2) видно, что синусы углов в спектре данного порядка прямо пропорциональны длинам волн:
.
(10.4)
Зная углы φi , под которыми видны данные линии спектра, можно найти их длины волн; расчетная формула для нахождения λi:
.
(10.5)
Основными характеристиками дифракционной решетки являются её разрешающая способность и дисперсия.
Разрешающая способность — это возможность разделять две спектральные линии, мало отличающиеся друг от друга по длине волны, т.е. видеть их в спектре как две линии, а не как одну. Разрешающей способностью любого спектрального прибора называется отношение длины той волны, около которой производится измерение, к наименьшему интервалу длин волн, который может быть обнаружен и измерен этим прибором.
Расчет показывает, что разрешающая способность R дифракционной решетки
,
(10.6)
где N – общее число штрихов решетки; m – наибольший порядок спектра.
В решетке большая разрешающая способность достигается за счет больших значений N, так как порядок m обычно не велик.
Чем больше число щелей N, тем большее количество световой энергии пройдет через решетку, тем больше минимумов образуется между соседними главными максимумами, тем, следовательно, более интесивными и более острыми (четкими) будут главные максимумы.