Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
история Теории прочности.rtf
Скачиваний:
60
Добавлен:
08.04.2015
Размер:
306.71 Кб
Скачать

Теории прочности в современном понимании

Под прочностью или трещиноcтойкостью понимается способность твердого тела сопротивляться развитию в нем трещины. Величина прочности оценивается либо значением напряжения, при котором тело разрушается, либо работой деформаций.

Трещины хрупкого разрушения в горных породах следует рассматривать как поверхность разрыва вектора перемещения. На такой поверхности все три компоненты u, v, w этого вектора могут иметь разрыв. Имеется три вида независимых кинематических движений верхней и нижней поверхностей трещины относительно друг друга при разрушении тела: нормальный отрыв, поперечный и продольный сдвиги.

Типы движений противоположных поверхностей трещины, расположенной до деформирования в одной плоскости, можно описать следующим образом:

• нормальный отрыв: две противолежащие поверхности трещины стремятся разойтись симметрично относительно плоскости, в которой была расположена трещина до деформации; между сторонами трещины возникает полость;

• поперечный сдвиг: две противолежащие поверхности трещины скользят одна по другой в одной плоскости, но в противоположных направлениях (срез);

• продольный сдвиг: две противолежащие поверхности трещины в процессе деформирования тела претерпевают кручение в противоположном направлении и оказываются после деформации в различных плоскостях (кручение).

Наиболее опасными с точки зрения развития разрушения являются трещины нормального отрыва. Это связано с тем, что при таком варианте разрушения не происходит потерь энергии, связанных с преодолением сил трения между противоположными поверхностями трещины.

При разрушении на разрыв различают прочность теоретическую и техническую (реальную). Под теоретической прочностью понимают прочность бездефектного твердого тела. В этом случае прочность определяется только величиной энергии связи между частицами (атомы, молекулы) твердого тела. Величина теоретической прочности тела на разрыв (развивается трещина нормального отрыва) составляет примерно одну десятую от значения модуля Юнга: = 0,1E = 103 ч 104 МПа.

Расчетная величина теоретической прочности некоторых кристаллических минералов: NaCl – 3950 МПа, MgO – 17300 МПа, LiF – 11400 МПа, теоретическая прочность аморфного неорганического стекла составляет 8000 МПа.

Под дефектами твердого тела понимаются любые нарушения кристаллической решетки (внедренные атомы другого вещества и вакансии в узлах кристаллической решетки – это точечные дефекты; дислокации - линейные дефекты; к дефектам относят и механическое повреждение поверхности твердого тела – царапины).

Под технической прочностью понимают прочность реального твердого тела со всеми дефектами. Величина технической прочности значительно (на 2 порядка) меньше теоретической прочности.

Главными дефектами в горной породе, приводящими к значительному понижению их прочности, являются адгезионные границы, трещины и поры. Как следствие этого, реальная прочность горных пород при одноосном растяжении – 11 МПа, порфирит – 17,5 МПа, песчаник кварцевый – 6,6 МПа, известняк – 3,0 МПа).

Если представить трещины и поры в виде эллипса длиной l, то в тупиковой части трещины действует напряжение: , то низкое значение технической прочности горных пород при их растяжении можно объяснить следующим образом: в тупиковой части микротрещин (вершине) или пор возникает резкое увеличение действующего напряжения (происходит концентрация напряжений). Если в среднем сечении образца возникает напряжениеи радиусом закругления

sк = 2s*·(l / r)0,5,

Развитие трещин сдвига существенно затруднено при наличии сил (напряжений), стремящихся прижать две поверхности сдвиговой трещины друг к другу. При этом резко возрастают силы трения (силы внутреннего трения), сдерживающие развитие сдвиговой трещины. Физически это означает появление дополнительного слагаемого (помимо слагаемого, учитывающего действие сил связи в структуре тела), из-за которого и наблюдаются значительные расхождения величины прочности твердых тел при их растяжении и сжатии. Это является следствием не только возникновения внутреннего трения, но и большой неоднородности свойств горных пород. Для более однородных материалов отношение многократно превышает величину их прочности. Прочность горных пород при одноосном сжатии значительно меньше: для чугуна, например, это отношение равно трем, для магниевых сплавов – чуть больше единицы.

Переход к двухосному, а затем и трехосному нагружению образцов горных пород приводит к дальнейшему росту их прочности и увеличению энергоёмкости разрушения.

Учет трения, возникающего между сторонами развивающейся сдвиговой трещины, является сутью механических теорий прочности Кулона, Кулона–Навье, Мора. Знакомство с двумя первыми теориями прочности позволит лучше понять роль трения в увеличении прочности горных пород.

Механическая теория прочности Кулона

Разрушение образца горной породы, находящегося в сложном напряженном состоянии сжатия, происходит в результате развития в нем сдвиговой трещины. Происходит это тогда, когда предельного значения

│ t1 │ ³ tо ,│ t2 │ ³ tо , │ t3 │ ³ tо,

где – прочность образца на сдвиг при растяжении и сжатии. Эту величину часто называют когезионной прочностью, сцеплением горной породы, так как она определяется не только энергией связей в структуре породы, характеризующих её адгезионную и когезионную прочность, но и с зацеплением частиц друг за друга при сдвиге, с затратой усилий на вращение, перемещение минеральных частиц в плоскости сдвига.

( s1 – s3) / 2 ³ tо.

Экспериментально этот вывод не подтверждается: в экспериментах на сжатие плоскость сдвига составляет с направлением наибольшего нормального напряжения угол, меньший 450.

При выполнении записанного условия горная порода разрушается с образованием плоскости (поверхности) скольжения. Плоскость, по которой происходит сдвиговое разрушение, делит пополам угол между направлением действия напряжений велико), но если величина нагрузки мала, то развитие затухающей ползучести обеспечивает стабилизацию деформации образца во времени и разрушения не произойдет. Образец горной породы может разрушиться спустя какое-то время в результате развития в образце незатухающей ползучести.

Серьезным недостатком теории Кулона является содержащееся в ней предположение о том, что материал обладает одинаковым сопротивлением растяжению и сжатию.

Механическая теория прочности Кулона–Навье

Основное положение теории Кулона–Навье, действующее в плоскости сдвигового разрушения, повышает сопротивление тела сдвигу на величину, пропорциональную величине этого нормального напряжения. РазрушениеНавье: нормальное напряжение твердого тела в этом случае произойдет тогда, когда касательное напряжение, действующее в плоскости сдвига, достигнет величины

t = tо + m·s

где m.s –напряжение трения, m – постоянная материала, именуемая как «коэффициент внутреннего трения». Внутреннее трение можно рассматривать как дополнительные силы сцепления в горной породе, возникающие между поверхностями сдвиговой трещины под действием среднего нормального напряжения.

Между осью нагружения и плоскостью разрушения определяется выражением и линейно зависит от нормального давления, действующего в этой же плоскости.

b = 45о – j / 2

где tg j = m.

Рис. 1. Силы, действующие на груз, находящийся на наклонной плоскости

Слагаемое G к горизонту плоскости., находящийся на наклоненной под углом груз не в состоянии скользить по плоскости из-за наличия силы трения. При малых значениях угла Fтр между грузом и плоскостью. В этом случае сила трения Fтр превосходит величину силы скольжения Fс.

По определению имеем Fтр = Fн, где Fн – нормальная компонента силы G или прижимающая сила, – и достижении силой скольжения величины силы трениякоэффициент трения. Движение груза по наклонной плоскости начнется при увеличении угла Fс = Fтр.

Величина сил Fн и Fс легко находится через вес груза: Fн = Gcosj и Fс = m.Fн. Из равенства m.G·cos j = G·sin j определим коэффициент внутреннего трения m через угол j: m = tg j.

Термин «внутреннее трение» следует понимать как способность горной породы повышать сопротивление разрушению под влиянием среднего нормального напряжения сжатия.

К физической особенности развития трещин сдвига в горных породах следует отнести образование на плоскости сдвига порошкообразного материала, обладающего высокой дисперсностью.

Наличие жидкости в горной породе изменяет развитие разрушения, т.к. внешняя нагрузка воспринимается уже не только твердым скелетом породы, но и жидкостью, находящейся в порах. Если геометрия порового пространства горной породы обеспечивает дренируемость жидкости, то под действием напора Рж, где n / Рж – удельный вес жидкости, произойдет фильтрация жидкости из образца, из очага разрушения. Это вызовет уплотнение породы, при этом все меньшая часть внешней нагрузки будет восприниматься жидкостью.

Критерий Кулона–Навье для пористых горных пород, насыщенных недренируемой жидкостью, глин имеет иной вид

t = tо + (sср – Рn)· tg j.

Из уравнения следует, что поровое давление Ро, а снижает величину слагаемого, связанного с действием нормального напряжения. Это означает, что рост порового давления создает условия для преждевременного наступления формоизменения, стимулирует сдвиговую неустойчивость горной породы: снижает суммарное сопротивление сдвигу. Подчеркнем, что рассмотренные явления не оказывают влияния на изменение величины коэффициента трения: жидкость, находящаяся в порах под высоким давлением, в развивающихся сколах не служит смазкой. Поровая жидкость является смазкой только в случае проникновения её на адгезионную границу. Заметим, что появление на адгезионных границах жидкости (воды) может происходить вследствие дегидратации минералов, входящих в состав горных пород.

sср – Рn = sэфф,

Появление эффективного нормального напряжения препятствует закономерному уплотнению горной породы с увеличением глубины залегания пород. Появление аномального уплотнения свойственно горным породам, имеющим большую пористость. В первую очередь, это отличает глинистые горные породы, которые не только имеют большую пористость, но и обладают способностью к образованию связанной воды. Последнее препятствует отжиму воды при сжатии глинистой горной породы.

Энергетическая теория прочности Гриффита А.А.

Энергетическая теория прочности Гриффита А.А является физической теорией. Основной задачей физических теорий прочности является установление механизма разрушения твердого тела под действием приложенных к нему механических нагрузок.

Теория Гриффита основана на законе сохранения энергии и на рассмотрении твердого тела как сплошной среды, содержащей трещины. Основное энергетическое уравнение имеет вид:

Wn + Wy = const,

2 / 2E – упругая энергия тела, запасаемая в нем при деформировании,о = Дж/м2, Wy = V о – энергетическая характеристика поверхности – удельная свободная поверхностная энергия, dimo – поверхностная энергия тела, s – площадь его поверхности, где Wn = s V – объём тела. При росте трещины величина поверхностной энергии увеличивается на величину Wn, а упругая энергия уменьшается на величину Wy. Уравнение энергетического баланса при развитии трещин в твердом теле имеет вид

(Wn + DWn) + (Wy – DWy) = const.

Разрушение твердого тела при наложении на него механических усилий наступает тогда, когда скорость освобождения упругой энергии превосходит скорость прироста поверхностей энергии

dWn/dl < dWy/dl.

Из последнего неравенства и была получена Гриффитом А.А. формула, связывающая прочность тела, величину дефекта и удельной свободной поверхностной энергии:

s = [2E.go / (p·l)]0,5,

где E – модуль Юнга, l – длина трещины.

Чем больше длина трещины, находящейся в теле, тем меньше его прочность. Из приведенной формулы следует, что прочность тела зависит от величины удельной свободной поверхностной энергии.

Недостатки теории Гриффита А.А.

1) Эксперименты показали, что величина прочности тел зависит от времени действия t (t, T). Между тем, в формуле Гриффита А.А. эти физические характеристики отсутствуют. Развитие трещины в теле сопровождается деформационными потерями энергии в 102 ч 104 раз. Под деформационными потерями энергии понимают затраты энергии на развитие пластических деформаций материала на вершине трещины.

Сумма удельной свободной поверхностной энергии и деформационных потерь энергии определяет эффективную энергию разрушения.

2) Такое различие связано с возникновением механо-электрических преобразований: при росте трещин нормального отрыва через минерал на свежих поверхностях трещины возникают противоположные по знаку электрические заряды, обеспечивающие дополнительное силовое взаимодействие между сторонами трещины и приводящие к увеличению прочности.

В настоящее время формула Гриффита А.А. для оценки величины прочности имеет следующий вид

s = [ 2Egэф / (pl)] 0,5.

3) В теории Гриффита А.А. формулируется лишь необходимое условие разрушения. Достаточного условия разрушения в теории Гриффита А.А. не сформулировано.

4) Совершенно не рассматривается трещина как концентратор напряжения.

Эффект Иоффе А.Ф.

Эффект состоит в резком увеличении прочности тела после ликвидации дефектов, находящихся на его поверхности. При этом, естественно, предполагается, что и объёмных дефектов в теле нет.

Визуальная отбраковка внутренних дефектов (изменение преломления лучей света при прохождении через образцы) и последующее за этим растворение поверхности кристалла галита (NaCl) в воде и поверхности неорганического стекла в плавиковой кислоте (HF) убедительно показало влияние поверхностных дефектов на изменение прочности тела: при одноосном растяжении образца галита разрыв образца происходит не в тонкой его части, где, казалось бы, и должен произойти (народная мудрость говорит, что «где тонко, там и рвется»), а в той части образца, которая не растворялась в воде и была значительно толще. Полоса же неорганического стекла, без объемных дефектов и лишенная поверхностных дефектов с помощью кислоты HF, легко изгибалась в колесо, не разрушаясь. Все это стало возможно только после ликвидации дефектов и увеличения прочности указанных тел более, чем на два порядка.

С эффектом Иоффе А.Ф. тесно связано развитие самоподдерживающего разрушения деформируемого тела: резкое освобождение накопленной упругой энергии способно вызвать разрушение тела (массовое дробление) при прохождении через него волны разгрузки, вызывающей появление в объёме тела растягивающих напряжений.

Эффект Ребиндера П.А.

Эффект заключается в понижении прочности твердых тел при их разрушении в присутствии жидкости. Прочность при этом определяется по формуле.

s = [2Ego' / pl]0,5.

Как следует из приведенной формулы, объяснение эффекта Ребиндера П.А. основано на модели разрушения Гриффита А.А.

Физическая адсорбция – это обратимое взаимодействие жидкости и поверхности твердого тела. Между молекулой жидкости и твердым телом нет химического взаимодействия. При изменении условий (температуры, давления) молекула может покинуть место контакта. При разрушении горных пород физическая адсорбция возникает при использовании полярных жидкостей (вода, спирт, например). Неполярные жидкости (такие как керосин, бензол, очищенная от воды нефть) не снижают прочность горных пород.

Исследования эффекта Ребиндера П.А. при разрушении породообразующих минералов (кальцит, слюда), неорганического стекла, щелочно-галоидных кристаллов показали, что прочность этих диэлектрических тел достигает максимального значения уmax при разрушении в вакууме, сухом воздухе, чистых диэлектрических жидкостях (не-полярных жидкостях), минимального значения уmin прочность минералов достигает при разрушении их в водных растворах электролитов, поверхностно-активных веществ, причем уmax / уmin = 2,5 ч 3,5.

С разупрочняющим поверхностно-активным действием жидкости на горные породы связывались большие надежды в повышении механической скорости бурения. Основанием для них служило значительное понижение твердости горных пород, наблюдаемое в лабораторных условиях при вдавливании штампа в образцы горных пород в присутствии воды, водных растворов понизителей твердости. (Эксперименты показали, что жидкость определяет не только величину твердости горной породы, но и масштаб разрушения породы под индентором (объем лунки): уменьшение объема лунки тем значительнее, чем снижение условного коэффициента пластичности). Добавление этих же веществ в буровой раствор на водной основе не вызывало облегчения разрушения горных пород при бурении скважин в ожидаемой мере.

Лабораторные исследования выявили следующие особенности эффекта Ребиндера А.П.:

• избирательность: в жидкостях, не обладающих адсорбционной активностью, прочностные характеристики породообразующих минералов не снижаются;

• эффективность адсорбционного действия жидкостей тесно связана с величиной разрушаемых твердости тел: с уменьшением твердости величина эффекта Ребиндера П.А. убывает в последовательности, совпадающей с уменьшением твердости минералов по шкале Мооса (корунд, кварц, кальцит, тальк);

• зависимость прочности минералов от относительной диэлектрической проницаемости жидкости: с ростом этой величины прочность минералов снижается и т.д.

В настоящее время в вопросе влияния бурового раствора на разрушение горных пород на забое нет единого мнения: если одни исследователи полагают, что дисперсионная среда раствора не влияет на разрушение горной породы забоя скважины под зубом долота, то другие рассматривают адсорбционное понижение прочности в качестве одного из основных резервов повышения механической скорости бурения.

Наличие столь полярных мнений отражает современное состояние понимания природы эффекта Ребиндера П.А., вызвано отсутствием адекватной модели, позволяющей прогнозировать влияние жидкости на развитие разрушения. Представления Ребиндера П.А. о природе влияния жидкости на изменение прочности неорганических диэлектриков и горных пород требуют значительного уточнения.

Кинетическая теория прочности

Накопленный экспериментальный материал позволил академику Журкову С.Н. в 50-е годы минувшего столетия предложить новую физическую теорию прочности.

Кинетическая теория прочности учитывает строение тела и наличие тепловых колебаний атомов, расположенных в узлах кристаллических решеток: рост трещины представляется как процесс последовательного разрывания связей в её вершине под действием механического напряжения.

Разрыв связей начинается в местах локализации микротрещин и других дефектов. Особое положение атомов (частиц) в вершине трещины связано с тем, что здесь они находятся в граничной области, разделяющей атомы, находящиеся внутри тела, и атомы, образующие поверхность разрыва, т.е. трещину. Атомы, находящиеся на поверхности разрыва, взаимодействуют с меньшим числом атомов, чем атомы, находящиеся внутри разрушаемого тела.

Это приводит к увеличению потенциальной энергии атомов, находящихся на поверхности. Как следствие, в поверхностном слое материала сосредоточен больший запас потенциальной энергии, чем во внутренних слоях. Для перевода внутренних атомов на поверхность трещины требуется затратить дополнительную энергию.

Основное физическое допущение кинетической теории прочности: существует механизм разрыва связей, связанный с переходом атомов через потенциальный барьер Uо. Величина барьера U регулируется механическим напряжением у, прикладываемым к телу: чем больше напряжение, тем меньше высота барьера

U = Uo – a.s

представляет собой структурно-чувствительный коэффициент. В ненапряженном теле при отсутствии коррозии трещина должна залечиваться вплоть до величины первичной трещины. Напряженияи более вероятен переход атомов из объема твердого тела на поверхность трещины. В приведенной формуле величина у, снижая высоту барьера U, облегчают переход частиц на обе поверхности трещины, т.е. обеспечивают рост трещины.

Дополнительная кинетическая энергии, восполняющая дефицит энергии у атомов, находящихся в объеме тела, для перехода их на поверхность, равная U, называется энергией активации процесса разрушения.

Основная формула кинетической теории прочности, определяющая время жизни образца под нагрузкой (долговечность тела), имеет вид (формула Журкова С.Н.)

t = to exp [(Uo – a.s) / (kT)],

где to – частота колебаний атомов (10-11 ч 10-13 с-1), k – постоянная Больцмана, T – абсолютная температура, kT – энергия теплового колебания атомов. Увеличение напряжений у приводит к снижению высоты барьера и уменьшению долговечности тела t.

Из формулы Журкова С.Н. следует, что прочность твердого тела можно определить следующим образом:

s = (Uo – kT·ln t/to) / a.

Это явление называется статической усталостью.

Недостатки кинетической теории прочности:

1) Основное физическое допущение к настоящему времени не доказано.

Это означает, что небольшим изменением коэффициентов и параметров, входящих в эту формулу, можно получить любое требуемое значение долговечности.

2) В теории рассматривается только трещина нормального отрыва, и основное физическое допущение применяется только к этому случаю. Между тем, разрушение твердых тел далеко не всегда сопровождается ростом трещин нормального отрыва, есть трещины и сдвиговые.