Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
146
Добавлен:
02.04.2015
Размер:
3.78 Mб
Скачать

Обозначения

Две крайние цифры номера справа, умноженные на пять, выражают диаметр шейки вала d в мм; третья цифра справа выражает номер серии; четвертая цифра справа выражает тип подшипника, так: отсутствие цифры (нуль) - шариковый радиальный, единица - шариковый сферический, два - роликовый цилиндрический, ... семь - роликовый конический.

Пятая и другие цифры справа, если они есть, означают конструктивные особенности данного типа.

д) распределение нагрузки на теле качения подшипника

Рис. 48

Задача распределения нагрузки на тела качения статически неопределимая и решается на основе совместности деформации системы:

Для шарикоподшипника:

. . . . . . . . . . . .

Для роликоподшипника:

. . . . . . . . . . .

Из вышеприведенных соображений можно сделать выводы:

1. Нагрузку воспринимают только нижние тела качения, a верхние и боковые - не воспринимают.

2. Наибольшая нагрузка приходится на центральный шарик или ролик; решение задачи показывает, что он несет нагрузку в 4 - б раз большую средней, которая имела бы место, если бы все тела качения воспринимали нагрузку поровну.

е) особенности кинематики подшипников качения

Подшипники можно рассматривать как планетарный ряд с двумя вариантами привода:

1) вращается внутреннее кольцо,

2) вращается наружное кольцо.

Рис. 49

Мгновенный центр скоростей (МЦС) лежит в точке контакта тела качения с неподвижным кольцом, построение пла­нов скоростей показывает, что при равных угловых скоростях - : , так как;;.

Это значит, что скорость центра тела качения (сепаратора), а, следовательно, и угловые скорости вращения тел качения во втором случае больше, чем в первом, а, следовательно, больше и износ всех элементов подшипника. Это обстоятельство в расчетной формуле для подшипников качения учитывается особым коэффициентом.

ж) расчет (подбор) подшипников качения

Статический расчет - только для подшипников, делающих меньше одного оборота, например, подшипников поворотных кранов, грузоподъемных крюков и пр.

R С0

где R - реакция опоры;

Со - допускаемая статическая грузоподъёмность подшипника (по каталогам подшипников).

Расчет на долговечность (по динамической грузоподъёмности) - основной расчет.

С – паспортная динамическая грузоподъёмность подшипника (каталогам подшипников) – это такая постоянная нагрузка, которую подшипник может выдержать в течение одного миллиона оборотов без появления признаков усталости.

Динамическая грузоподъёмность и ресурс работы подшипника L (в миллионах оборотов) связаны эмпирической формулой , (7.1)

где Р – эквивалентная динамическая нагрузка на подшипник (см. ниже),

p = 3 для шариковых и p =3,33 для роликовых подшипников.

Ресурс подшипника в часах работы , (7.2)

где n – частота вращения подшипника (об/мин).

Эквивалентная динамическая нагрузка для радиальных и радиально-упорных подшипников:

, (7.3)

где - радиальная нагрузка на опору;

- осевая нагрузка на опору;

V - коэффициент, зависящий от того, какое кольцо вращается: если внутреннее – V = 1; если наружное V= 1,2.

X и Y - табличные коэффициенты, характеризующие способность данного типа подшипника воспринимать радиальную и осевую нагрузку (выбираются по каталогам подшипников).

Кб – коэффициент безопасности, зависящий от характера воспринимаемой нагрузки и степени ответственности механизма в машине(выбирается по справочникам в пределах 1,0-2,5);

KТ - табличный температурный коэффициент, при t  1000C - Кт = 1.

При практических расчётах, когда задана расчётная долговечность работы подшипника в часах, требуемая динамическая грузоподъёмность определится из выражения

(7.4)

При переменной нагрузке, которая задается усредненным графиком (рис.50), определяется приведенная динамическая эквивалентная нагрузка:

Например, для графика, указанного на рисунке:

Рис. 50

Здесь на графике: Pi, ni, Lhi - нагрузка, число оборотов и долговечность на i-ой ступени графика.

Центробежные силы инерции, действующие в подшипниках качения, определяются известным уравнением . При малых и средних угловых скоростях они не очень велики, но сильно возрастают при высоких и сверхвысоких углов их скоростях, становясь главными нагрузками, которые и определяют предельное число оборотов подшипников этого типа.

Для упорных шариковых подшипников центробежные силы составляют большую опасность, чем для других типов, способствуя износу сепараторов.