Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

MS_bak_220400_220700

.pdf
Скачиваний:
150
Добавлен:
02.04.2015
Размер:
2.74 Mб
Скачать

Продолжение табл. 3.17

1

2

3

4

5

6

7

8

9

10

8

Полиме-

Расход рассола в рубашку –

1,950285

-0,950918

0,000949

3

2,0

П,

 

ризатор

конверсия мономера

 

 

 

%/(м3/ч)

 

мин

ПИ

9

Тепло-

Расход греющего пара –

1.947071

-0,947776

0,008539

5

0,1

И,

 

обменник

температура смеси

 

 

 

С/(м3/ч)

 

мин

ПИД

10

Колонна

Расход гр. пара в кипят. –

1б739941

-0б758813

0,137767

4

0,5

ПД,

 

ректиф.

темп. смеси в кубе колонны

 

 

 

С/(т/ч)

 

мин

ПИД

11

Тепло-

Расход греющего пара –

0,968193

0,09701

4

0,25

П,

 

обменник

температура смеси

 

 

 

С/(т/ч)

 

мин

ПИ

12

Колонна

Расход флегмы – конц.

2,311619

-1,772463

0,449399

-0,049551

5

2,0

ПИ,

 

экстр.рект.

комп. на в.к.т.

 

 

 

%/(т/ч)

 

мин

ПД

13

Тепло-

Расход греющего пара –

1,940588

-0,941176

0,000588

7

0,1

И,

 

обменник

температура смеси

 

 

 

С/(м3/ч)

 

мин

ПД

14

Колонна

Расход гр. пара в кипят. –

1,925408

-0,926238

0,000166

3

1,0

П,

 

ректиф.

темп. смеси в кубе колонны

 

 

 

С/(т/ч)

 

мин

ПИ

15

Полиме-

Расход катализатора –

1,923074

-0,924355

-0,001321

4

1,0

П,

 

ризатор

температура в реакторе

 

 

 

С/(м3/ч)

 

мин

ПИД

16

Тепло-

Расход греющего пара –

1,769409

-0,784003

0,176592

5

0,5

ПД,

 

обменник

температура смеси

 

 

 

С/(м3/ч)

 

мин

ПИД

17

Колонна

Расход гр. пара в кипят. –

0,881235

0,143705

2

0,5

ПИ,

 

ректиф.

темп. смеси в кубе колонны

 

 

 

С/(т/ч)

 

мин

ПИД

161

Окончание табл. 3.17

1

2

3

4

5

6

7

8

9

10

18

Колонна

Расход флегмы – конц.

2,121378

-1,348749

0,224103

-0,000425

5

2,0

П,

 

экстр.рект.

комп. на в.к.т.

 

 

 

%/(т/ч)

 

мин

ПИД

19

Полиме-

Расход рассола в рубашку –

1,950285

-0,950918

0,000949

3

2,0

ПД,

 

ризатор

конверсия мономера

 

 

 

%/(м3/ч)

 

мин

И

20

Колонна

Расход гр. пара в кипят. –

1,952505

-0,952941

-0,002179

10

1,0

ПИ,

 

ректиф.

конц. комп. на к.т. колонны

 

 

 

%/(т/ч)

 

мин

ПИД

21

Тепло-

Расход греющего пара –

0,968193

0,09701

4

0,25

П,

 

обменник

температура смеси

 

 

 

С/(т/ч)

 

мин

ПИД

22

Паровой

Расход топлива – темпера-

2,253742

-1,661497

0,400507

0,012828

0

10,0 с

И,

 

котел

тура в котле

 

 

 

С/(м3/ч)

 

 

ПИ

23

Тепло-

Расход греющего пара –

0,976247

0,287411

6

0,1

П,

 

обменник

температура смеси

 

 

 

С/(т/ч)

 

мин

ПД

24

Колонна

Расход гр. пара в кипят. –

1,925408

-0,926238

0,000166

3

1,0

ПД,

 

ректиф.

темп. смеси в кубе колонны

 

 

 

С/(т/ч)

 

мин

ПИД

25

Колонна

Расход флегмы – конц.

2,311619

-1,772463

0,449399

-0,049551

5

2,0

ПД,

 

экстр.рект.

комп. на в.к.т.

 

 

 

%/(т/ч)

 

мин

ПИД

162

Глава 4. РАЗРАБОТКА И ИССЛЕДОВАНИЕ МОДЕЛИ СТАТИКИ ПРОЦЕССА РЕКТИФИКАЦИИ

В пищевой и химической промышленности значительное место занимают процессы массообмена (ректификации, абсорбции, десорбции, экстракции и т. д.), в которых массообмен происходит между различными фазами. В результате чего достигается обогащение одной из фаз одним или несколькими компонентами смеси. Математическое моделирование процессов используется для их исследования и выбора оптимальных режимных параметров.

Рассмотрим разработку и исследование детерминированной модели на примере процесса ректификации. Необходимо определить концентрации разделяемых компонентов смеси по высоте ректификационной колонны при заданных входных управляющих и возмущающих параметрах. Исследование модели заключается в построении статических характеристик процесса, выборе управляющих параметров и оптимизации процесса по выбранному критерию.

4.1. Состав математического описания процесса и принимаемые допущения к модели

Задачей моделирования процесса ректификации (рис. 4.1) является расчет состава выходных продуктов колонны и концентраций разделяемых компонентов на каждой контактной ступени разделения при заданных значениях входных управляющих и возмущающих параметров [13].

Математическое описание статики процесса ректификации включает следующие группы уравнений:

1. Уравнения материальных балансов колонны в целом, по секциям и каждой контактной ступени разделения по каждому компоненту.

2.Уравнения парожидкостного (фазового) равновесия.

3.Соотношения, устанавливающие кинетику массообмена.

163

4. Ограничения, вытекающие из стехиометрических соотношений.

Рис. 4.1. Схема ректификационной установки

В зависимости от степени детализации модели могут приниматься те или иные допущения. Допустим, примем следующие допущения:

-жидкость на контактных ступенях разделения (тарелках) колонны, а также в кубе и дефлегматоре идеально перемешивается;

-унос жидкости с тарелок паром отсутствует;

-расходы жидкости и пара в потоках по высоте отдельных секций колонны принимаются постоянными;

-пар, покидающий отдельные тарелки колонны находится

вравновесии с жидкостью (рассматривается стационарный процесс);

-весь пар, покидающий последнюю тарелку, полностью конденсируется в дефлегматоре;

-температурный профиль по высоте колонны принимается линейным;

-куб и дефлегматор рассматриваются как теоретические тарелки;

164

-сырье подается в колонну в жидкой фазе;

-боковой погон отбирается в газовой фазе.

Рассмотрим составление математической модели на примере брагоэпюрационной колонны с боковым отбором фракции в производстве спирта (рис. 4.2).

Рис. 4.2. Схема материальных потоков колонны

Обозначения, принятые на схеме:

F, R, D, Fb,W - расходы сырья, флегмы, дистиллята, бокового отбора и кубового продукта, т/ч;

L,V - расходы жидкости и пара, отходящие с каждой тарелки (контактной ступени разделения), т/ч;

165

x, y - концентрации компонентов смеси в жидкой и газовой фазах, % мас.;

T0 ,TN - температура в кубе и на последней тарелке колон-

ны, С.

Введем нумерацию контактных ступеней разделения (снизу вверх): i - текущий номер ступени; N - общее число ступеней; f - тарелка, на которую подается питание; Nb - тарелка боково-

го отбора; 0 - нулевая ступень (куб колонны); N 1 - дефлегматор.

j- номер компонента разделяемой смеси;

k- общее число компонентов;

X Fj - концентрация j -го компонента в сырье, % мас.;

xi, j , yi, j - концентрации j -го компонента в жидкой и газо-

вой фазах, отходящие с i -той тарелки, % мас.

Для брагоэпюрационной колонны, рассматриваемой в качестве примера, общий материальный баланс по колонне описы-

вается уравнениями:

 

 

 

 

 

 

F D Fb W ,

 

 

 

(4.1)

 

VN R D .

 

 

 

(4.2)

Уравнение общего покомпонентного баланса:

 

F X Fj D xN 1, j Fb yNb, j W x0, j ,

 

 

 

 

j 1, k .

(4.3)

В соответствии с третьим допущением расходы пара и

жидкости в отдельных секциях колонны:

 

 

 

 

Vi

R D Fb , 0 i Nb ;

(4.4)

Vi

R D , Nb i N .

 

 

 

(4.5)

L0

W F D Fb ;

 

 

 

(4.6)

Li

R F , 1 i NF ;

 

 

 

(4.7)

Li

R , NF i N 1 .

 

 

 

(4.8)

166

 

 

 

 

 

Уравнения покомпонентного материального баланса (рис. 4.3), (4.9) для каждой из тарелок колонны от куба до дефлегматора:

Рис. 4.3. Схемы материальных потоков колонны по тарелкам

167

 

 

 

 

 

 

 

 

Номер тарелки

 

 

 

 

 

 

 

 

 

 

L1 x1, j

V0 y0, j

W x0, j

0

 

 

 

 

0

 

L2 x2, j

V0 y0, j

L1 x1, j

V1 y1, j

0

 

 

1

 

L3 x3, j

V1 y1, j

L2 x2, j

V2 y2, j

0

 

 

2

 

………………………….

 

 

 

(4.9)

 

 

 

 

 

 

 

Li 1 xi 1, j Vi 1 yi 1, j Li xi, j

Vi yi, j 0

 

i

 

………………………….

 

 

 

 

 

 

 

 

 

 

 

 

 

Lf 1 xf 1, j

Vf 1 y f 1, j Lf

xf , j Vf

y f , j F X Fj

 

f

 

Lf 2 xf 2, j

Vf

y f , j Lf 1 xf 1, j

Vf 1 y f 1, j 0

 

f 1

 

………………………….

 

 

 

 

 

 

 

 

 

LNb 1 xNb 1, j VNb 1 yNb 1, j LNb xNb, j VNb Fb yNb, j 0

Nb

 

………………………….

 

 

 

 

 

 

 

 

 

 

LN 1 xN 1, j VN 1 yN 1, j LN xN , j VN yN , j 0

 

N

 

VN yN , j LN 1 xN 1, j D xN 1, j 0

 

 

N 1

 

4.2.

Алгоритмы

расчета

констант

фазового

равновесия систем “жидкость - пар”

При условии фазового равновесия между газом и жидкостью связь составов газовой и жидкой фаз устанавливается уравнением Генри:

 

 

 

yi, j

 

i,

j

 

 

 

 

 

 

K

i, j

, i 0, N ,

j 1, k , (4.10)

xi, j

k

xi, j

 

 

 

 

i, j

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j 1

 

 

 

 

 

 

 

где Ki, j - константа фазового равновесия

j -го компонента на

i -ой тарелке;

i, j -

 

коэффициент относительной летучести, в

общем случае

 

ij

f

j

T

j

, P0

, x

ij

; T

j

, P0 -

температура и давле-

 

 

 

 

j

 

 

j

 

ние паров индивидуальных компонентов смеси.

168

В зависимости от компонентов разделяемой смеси и принятых допущений предусматривается шесть алгоритмов расчета констант фазового равновесия:

1) с постоянными коэффициентами j , не зависящими от

температуры;

2) с коэффициентами i, j , зависящими от температуры (температурный профиль – линейный);

3) с коэффициентами i, j , зависящими от температуры че-

рез давление паров индивидульных компонентов (температурный профиль по высоте колонны – линейный);

4) с коэффициентами i, j , зависящими от температуры и

состава смеси (температурный профиль – линейный);

5) с коэффициентами i, j , зависящими от температуры че-

рез давление паров индивидульных компонентов (температурный профиль – нелинейный);

6) с коэффициентами i, j , зависящими от температуры и состава смеси (температурный профиль – нелинейный).

Алгоритм 1

Коэффициенты относительной летучести постоянны:

 

 

 

 

 

j const ,

j 1, k .

(4.11)

Алгоритм 2

Коэффициенты относительной летучести зависят от температуры:

 

 

A

A

T

A

T 2

 

 

 

 

 

 

 

i, j

, i 0, N 1,

j 1, k , (4.12)

 

0, j

1, j

i

2, j

i

 

 

 

 

 

 

 

где Ti - значение температуры на i -ой тарелке, С;

A0, j A2, j -

постоянные коэффициенты.

Если температурный профиль по высоте колонны принимается линейным, то температуру на любой тарелке можно рассчитать по линейной зависимости:

169

 

 

T0 TN

 

 

 

 

T T

 

i , i 0, N ,

(4.13)

 

i 0

 

N

 

 

 

 

где i - текущий номер тарелки.

 

 

 

 

 

 

Алгоритм 3

 

 

 

 

 

 

В общем случае:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i, j

 

i, j

P0 , i

0, N 1,

j 1, k ,

(4.14)

 

 

 

 

i, j

 

 

 

 

 

где

i, j

- коэффициент активности j -го компонента в смеси;

P0

 

 

 

 

 

 

 

 

 

 

 

 

i, j

- давление паров индивидуального (чистого) компонента, кгс/см2. По алгоритму 3 коэффициенты активности принимаются

постоянными:

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

j

const ,

 

 

 

 

 

 

 

 

 

 

 

 

 

j 1, k .

 

 

 

 

(4.15)

Давление паров индивидуального компонента определяется

по уравнению Калингерта-Дэвиса:

 

 

 

 

 

 

 

 

 

 

 

 

ln P0 C

 

C2, j

 

C

 

T C

T 2

C

ln T

,

 

 

4, j

i, j

1, j

 

C3, j Ti

 

i

5, j

i

6, j

 

i

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

i 0, N 1,

j 1, k ,

(4.16)

где C1, j C6, j

- постоянные коэффициенты, характерные для j -

го компонента смеси; Ti - значение температуры на i -ой тарелке

(переводится в градусы Кельвина) [14, 15].

Также может использоваться уравнение Антуана:

lg P0

A

 

Bi, j

,

 

i, j

i, j

 

Ci, j ti

 

 

 

 

 

где Ai, j , Bi, j ,Ci, j - коэффициенты;

ti - значение температуры, С.

Алгоритм 4

Коэффициенты относительной летучести определяются по формуле (4.14).

170

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]