Добавил:
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
156
Добавлен:
30.03.2015
Размер:
1.1 Mб
Скачать

карбоновой кислотой, никотинамид — ее амидом. Оба соединения в организме легко превращаются друг в друга и поэтому обладают одинаковой витаминной активностью. Витамин РР плохо растворяется в воде, но хорошо в водных растворах шелочей.

Суточная потребность в витамине PP. Пищевые источники витамина PP.

Суточная потребность в витамине составляет 20—25 мг. Источником витамина являются животные (особенно печень, мясо) и многие растительные продукты, в первую очередь, рис, хлеб, картофель. Молоко и яйцо содержат следы ниацина. Правда, витамин РР способен синтезироваться клетками организма из триптофана, но этот процесс малоэффективен — из десятков молекул триптофана образуется только одна молекула витамина. Тем не менее продукты, богатые этой аминокислотой (молоко и яйцо), могут компенсировать недостаточное поступление никотинамида с пищей.

Метаболизм витамина PP. Поступающий с пищей витамин РР быстро всасывается в желудке и кишечнике в основном путем простой диффузии. С током крови никотиновая кислота легко попадает в печень и другие органы, несколько медленнее проникает в них никотинамид. В тканях оба соединения преимущественно используются для синтеза коферментных форм — NAD и NADP. Коферменты через биомембраны не проникают.

Биосинтез NAD осуществляется в два этапа. Первый — в цитоплазме с помощью фермента никотинмононуклеотид-пирофосфорилазы (источником синтеза фосфорибозилпирофосфата служит рибозо-5-фосфат, образующийся в пентозофосфатном пути окисления глюкозы):

Второй этап продолжается в ядре клетки, реакция катализируется NAD пирофосфорипазой:

Синтез кофермента может осуществляться также митохондриями. NADP образуется из NAD в цитоплазме клетки с участием фермента NAD-киназы:

Часть никотинамидных кофсрментов синтезируется в организме животных из триптофана. Однако этот путь, в который вовлекается до 2 % метаболического пула триптофана, значительно уступает по эффективности первому (т. е. из прямого витаминного предшественника).

Распад нуклеотидов катализируется ферментами гликогидролазами (соответственно NAD-гликогидролааза и NADP-гликогидролаза), расщепляющими гликозилныс связи с образованием никотинамида и АДФ-рибозы. Затем никотинамид окисляется и продукты его окисления (преобладает N-метилникотинамид) выводятся с мочой.

Биохимические функции витамина PP.

Почти весь имеющийся в клетках и жидких средах организма витамин РР представлен в виде никотинамида, включенного в состав коферментов — NAD и NADP. Поэтому значение ниацина определяется ролью этих коферментов, которая является чрезвычайно многогранной:

21

• NAD* — кофермент дегидрогеназ, участвующий в реакциях окисления глюкозы, жирных кислот, глицерина, аминокислот, является коферментом дегидрогеназ цикла

Кребса (исключая сукцинатдегидрогеназу). В этих реакциях

кофермент

выполняет

функцию

промежуточного

акцептора

электронов

и

протонов.

• NA D* — переносчик протонов и электронов в дыхательной

цепи митохондрий (от

окисляемого

субстрата к

первому комплексу цепи

тканевого

дыхания).

NAD* — субстрат ДНК-лигазной реакции при синтезе и репарации ДНК, а также субстрат для синтеза поли-АДФ-рибозы в поли-(АДФ)-рибозилировании белков хроматина.

NADPH-H+ — донор водорода в реакциях синтеза жирных кислот, холестерина,

стероидных

гормонов

и

некоторых

других

соединений.

NADPH-H+ — компонент монооксигеназной цепи микросомного окисления,

выполняющей функцию

детоксикации

антибиотиков и других чужеродных веществ.

NAD’ и

NADPH’H*

— аллостерические регуляторы

ферментов

энергетического

обмена, в частности, ферментов цикла Кребса, а также реакций новообразования глюкозы (глюконсогенеза).

Никотинамид и N-метилникотинамид (метаболит никотинамида) являются участниками процесса метилирования т-РНК и белков.

Гиповитаминоз витамина PP .

Характерным признаком недостаточности ниацина является симптомокомплекс «три Д»: дерматит, диарея, деменция. Так проявляется заболевание пеллагрой (от ит. pelle agra — шершавая кожа). Симптомы пеллагры чаше наблюдаются улиц с недостатком белка в диете. Объясняется это тем, что животные белки содержат оптимальное количество аминокислоты триптофана, витамина В6 и некоторых других, необходимых для биосинтеза ниацина.

Гипервитаминоз. У млекопитающих состояния гипервитаминоза РР вызвать не удалось. Данные о способности ниацина накапливаться в тканях отсутствуют. Избыток никотиновой кислоты быстро выводится с мочой.

Оценка обеспеченности организма витамином PP. Обеспеченность организма ниацином достаточно хорошо характеризуется величиной экскреции основных продуктов его катаболизма — N-метилникотинамида и метил-2-пиридон-5- карбоксиамида. В нормальных физиологических условиях концентрация выводимых с мочой метаболитов никотиновой кислоты и никотинамида невелика, но резко возрастает при их избыточном поступлении в организм. Определение количественного содержания N-метилникотинамида и его пиридонов в моче после применения нагрузочных доз витамина РР до настоящего времени служит единственным критерием обеспеченности организма этим витамином. Таким критерием не могут быть уровни самого витамина РР или его коферментных форм в крови, так как даже при тяжелой пеллагре их содержание мало отличается от нормы.

4.9 Биотин (витамин Н), антисеборрейный

Химическое строение и свойства витамина H. (Витамин Н от нем. Haut - кожа)

Биотин был выделен в 1935 г. из яичного желтка. Свое название витамин получил от греч. bios — жизнь из-за его способности стимулировать рост дрожжей и бактерий. Молекула витамина Н состоит из имидазольного и тетрагидротиофенового колец, боковая цепь представлена валериановой кислотой. N1-имидазольного кольца является местом карбоксилирования. Связываясь с ионом гидрокарбоната (НС03-), биотин становится коферментом, называемым карбоксибиотином.

22

Биотин плохо растворяется в воде, но хорошо в спирте. Он устойчив при нагревании и в растворах слабых щелочей и оснований. Биотин способен образовывать с авидином — гликопротеином белка куриного яйца — прочный комплекс, который не может расщепляться пищеварительными ферментами. Поэтому при частом употреблении сырых яиц прекращается всасывание присутствующего в пище биотина. Способность молекул авидина и биотина специфически связываться друг с другом используется в некоторых методах очистки в биотехнологии.

Суточная потребность витамина H. Пищевые источники витамина H. Биотин синтезируется микрофлорой кишечника человека. Это в значительной мере удовлетворяет потребности организма в биотине. Суточная потребность точно не определена, вероятнее всего она составляет 150—200 мкг.

Витамином Н богаты бобовые, а также цветная капуста, грибы; из продуктов животного происхождения — печень, почки, молоко, яичный желток.

Метаболизм витамина H. С растительной пищей витамин Н поступает преимущественно в свободном состоянии. Биотин животной пищи освобождается гидролазами от связи с различными белками и в свободном виде всасывается в тонком кишечнике. В кровяном русле биотин переносится альбумином и аккумулируется главным образом в печени. В тканях биотин находится в виде карбоксибиотинилферментов: СООгруппа валериановой кислоты карбоксибиотина ковалентно присоединена карбамидной связью к e-NH2-rpynne лизина, входящего в состав активного центра биотинзависимого фермента. Выводится биотин в свободном виде с мочой и экскрементами, причем с последними его выводится больше, чем поступает с пищей. Объясняется это способностью микрофлоры кишечника синтезировать биотин.

Биохимические функции витамина H. Витамин Н способствует усвоению тканями ионов бикарбоната (но не СO2) и активирует реакции карбоксилирования и транскарбоксилирования в составе следующих карбоксибиотинил-ферментов:

Пируваткарбоксилазы — фермента, катализирующего АТФ-зависимое образование оксалацетата из пирувата и НСО3-.

Ацетил-Ко А-карбоксилазы — первого фермента в реакциях биосинтеза жирных кислот. Активная форма энзима представляет собой множество длинных мономерных нитей. При ферментативном катализе отдается карбоксильная группа бикарбоната ацетил-коэнзиму А с образованием малонил-КоА:

• Пропионил-КоА-карбоксилаза - фермент, участвующий в окислении жирных кислот с нечетным числом атомов углерода. При этом происходит стереоспецифический перенос активированной карбоксильной группы от карбоксибиотина к пропионил-КоА с

23

образованием метил малонил-КоА:

Следует отметить, что ион бикарбоната может утилизироваться клеткой без участия биотина, как, например, это имеет место в карбомоилфосфатсинтетазной реакции при синтезе пиримидинов:

бета-метилкротоноил-КоА-карбоксилазы — фермента, участвующего в реакциях окислительного распада лейцина.

Метилмалонил-ЩУК-транскарбоксилазы — фермента, катализирующего реакцию транскарбоксилирования, а именно, обратимое превращение пирувата и оксалацетата (другие транскарбо-ксилазные реакции также протекают с участием биотина):

Гиповитаминоз.

При недостатке биотина нарушается синтез фосфолипидов, холестерина и др. При этом нарушается структура мембран клеток и субклеточных органелл.

Гипервитаминоз не описан.

5. Жирорастворимые витамины:

5.1 Витамин А (ретинол). Антиксерофтальмический, витамин роста.

Химическое строение и свойства. Витамин А был открыт в 1940 г. и назван фактором роста, так как с его удалением при экстракции корма грызунов жирорастворителями наблюдалась остановка роста и гибель мышей.

Жирорастворимый витамин А представляет собой циклический непредельный одноатомный спирт, состоящий из р-иононового кольца и боковой цепи из 2-х остатков изопрена и первичной спиртовой группы.

Спиртовая форма витамина А, ретинол, в организме окисляется до ретиналя (альдегид витамина А) и ретиноевой кислоты (вместо спиртовой группы образуется карбоксильная). Депонируется витамин А в печени в форме эфиров пальмитиновой и уксусной кислот (ретинилпальмитата и ретинилацетата), а также в виде ретинилфосфата.

Суточная потребность витамина А. Пищевые источники витамина А. Ретинол присутствует только в животной пище, особенно много его в печени и жире морских рыб и млекопитающих. Источником витамина для человека являются также каротины. А.

24

Суточная потребность в витамине А составляет 800 мкг для женщин и 1000 мкг для мужчин.

Метаболизм витамина A. Витамин А может образовываться в слизистой кишечника и печени из провитаминов — альфа-, бета- и гамма-каротинов под воздействием каротиноксигеназы. Всасывание витамина и его провитаминов происходит в составе мицелл, затем в энтероцитах они включаются в состав хиломикронов. В крови витамин А связывается с ретинолсвязывающим белком (один из белков фракции альфа1глобулинов). Ретинолсвязывающий белок обеспечивает растворимость ретинола, его защиту от окисления, транспорт и доставку в различные ткани. В сетчатке глаза ретинол превращается в ретиналь, в печени — в ретиналь и затем в ретиноевую кислоту, которая выводится с желчью в виде глюкуронидов.

Биохимические функции витамина A.

 

 

 

1.Ретинол

является

структурным

компонентом

клеточных

мембран.

2.Регулирует рост и дифференцировку клеток эмбриона и молодого организма, а также деление и дифференцировку быстро пролиферируюших тканей, в первую очередь, эпителиальных, хряща и костной ткани. Он контролирует синтез белков цитоскелета, реакции распада и синтеза гликопротеинов. Синтез последних осуществляется в аппарате Гольджи. Недостаток витамина А приводит к нарушению синтеза гликопротеинов (точнее, реакций гликозилирования, т. е. присоединения углеводного компонента к

белку), что

проявляется

потерей защитных свойств

слизистых

оболочек.

3.Участвует в фотохимическом акте зрения.

 

 

4.Является

важнейшим

компонентом антиоксидантной

защиты

организма.

5.Витамин А и ретиноиды стимулируют реакции клеточного иммунитета, в частности, увеличивают активность Т-киллеров.

6.Витамин А является антиканцерогеном, так как при его недостатке в организме увеличивается заболеваемость раком легкого и раком других локализаций.

Участие витамина А в процессе зрения

В сетчатке глаза имеются специализированные фоторецепторные клетки двух типов — палочки и колбочки. Наибольшей светочувствительностью обладают палочки, колбочки обеспечивают цветовое зрение. Наружные сегменты палочек содержат уплощенные замкнутые мембранные пузырьки — диски, уложенные в стопку. Диски богаты белком опсином. Опсин способен связываться с 11-цис-ретиналем, образуя пигмент пурпурно-красного цвета родопсин. Механизм образования зрительного сигнала достаточно хорошо изучен (рис. ниже):

1.Квант света стимулирует мембранные рецепторы наружного сегмента палочек сетчатки(родопсин).

2.Абсорбция света родопсином изомеризует цис-связь в 11-цис-ретинале в транс-связь. Такая транс-структура называется батородопсином (активированным родопсином). Транс-ретиналь имеет бледно-желтый оттенок, следовательно, при освещении родопсин обесцвечивается.

3.При освобождении протона из батородопсина образуется метародопсин II, гидролитический распад которого дает опсин и all-транс-ретиналь. Фотохимическая цепь в батородопсине (т. е. транс-ретиналь) служит для активации G-белка, называемого трансдуцином. Трансдуцин активируется ГТФ-ом.

4.Комплекс трансдуцин-ГДФ активирует специфическую фосфо-диэстеразу, последняя расщепляет цГМФ.

5.ГМФ

стимулирует

каскад

событий,

генерализующих

зрительный

сигнал

в

мозге:

перекрытие

Na-K-каналов

—►

деполяризация

мембраны —► возникновение электрического импульса —► преобразование импульса в зрительное восприятие в мозге.

25

Образование цис-ретиналя из транс-формы, катализируемое ретинальизомеразой, является медленным процессом, протекающим на свету. Цис-ретиналь связывается с опсином и образуется родопсин. В темноте синтез родопсина максимален. Однако нужно отметить, что синтез цис-ретиналя лишь частично протекает в сетчатке глаза, основное место его образования — печень. Кроме того, в сетчатке под действием специфической дегидрогеназы транс-ретиналь (альгид) превращается в транс-ретинол (спирт), который поступает в кровь, где соединяется с ретинолсвязывающим белком плазмы. Таким способом он доставляется в печень. В печени ретинолизомераза превращает трансретинол в цис-ретинол, последний с помощью NAD+-зависимой дегидрогеназы окисляется в цис-ретиналь, который также поступает в кровь. Этот комплекс улавливается пигментным эпителием сетчатки, и цис-ретиналь уже без участия ферментов связывается с опсином. Отсутствие регенерации родопсина приводит к слепоте в сумерках.

Участие витамина А в антиоксидантной защите организма.

Благодаря наличию сопряженных двойных связей в молекуле ретинол способен взаимодействовать со свободными радикалами различных типов, в том числе и со свободными радикалами кислорода. Эта важнейшая особенность витамина позволяет считать его эффективным антиоксидантом. Антиоксидантное действие ретинола проявляется также в том, что он значительно усиливает антиоксидантное действие витамина Е. Вместе с токоферолом и витамином С он активирует включение Se в состав глутатионпероксидазы (фермента, обезвреживающего перекиси липидов). Витамин А способствует поддержанию SH-rpyпп в восстановленном состоянии (SH-группам многообразного класса соединений также присуща антиоксидантная функция). В частности, препятствуя окислению SH-содержащих белков и образованию в них поперечных S-S-сшивок в составе кератина, ретинол тем самым уменьшает степень кератинизации эпителия (усиление кератинизации кожи приводит к развитию дерматита и раннему старению кожи).

Однако витамин А может проявлять себя и как прооксидант, так как он легко окисляется кислородом с образованием высокотоксичных перекисных продуктов. Полагают, что симптомы гипервитаминоза А как раз и обусловлены его прооксидантным действием на биомембраны, особенно усиливается процесс ПОЛ в лизосомных мембранах, к которым витамин А проявляет выраженную тропность. Витамин Е,

предохраняя

ненасыщенные

двойные

связи

ретинола

от

 

 

26

 

 

 

окисления и образования вследствие этого свободнорадикальных продуктов самого ретинола, препятствует проявлению его прооксилант-ных свойств. Необходимо отметить

исинергичную с токоферолом роль аскорбиновой кислоты в этих процессах.

Внастоящее время большое внимание в мировой литературе уделяется производным витамина А — ретиноидам. Полагают, что их механизм действия сходен со стероидными гормонами. Ретиноиды действуют на специфические рецепторные белки в клеточных ядрах. Далее такой лиганд-рецепторный комплекс связывается со специфическими участками ДНК, которые контролируют транскрипцию специальных генов. Идентификация этих генов служит предметом активного научного поиска.

Гиповитаминоз витамина А. Наиболее ранним симптомом недостаточности витамина А является куриная слепота — резкое снижение темновой адаптации. Характерным является поражение эпителиальных тканей: кожи (фолликулярный гиперкератоз), слизистых оболочек кишечника (вплоть до развития язв), бронхов (частые бронхиты), мочеполовой системы (легкое инфицирование). Дерматиты сопровождаются патологической пролиферацией, кератинизацией и слушиванием эпителия. Десквамация эпителия слезных каналов может приводить к их закупорке и уменьшению смачивания роговицы глаза слезной жидкостью — она высыхает (ксерофтальмия) и размягчается (кератомаляция) с образованием язв и «бельма». Поражение роговицы может развиваться очень быстро, так как нарушение защитных свойств эпителия приводит к присоединению

вторичной

инфекции.

В качестве эффективного антиоксиданта витамин А защишает

организм от

«пероксидного стресса» — важнейшего патогенетического звена многих тяжелых заболеваний.

Гипервитаминоз А. Избыточное введение витамина А опасно. В первую очередь потому, что витамин А оказывает повреждающее действие на мембраны лизосом, истечение лизосомальных гидролаз внутрь клетки и за ее пределы, а затем дальнейшее повреждение клеток и тканей. Избыток витамина А оказывает также повреждающее действие на мембраны митохондрий и эритроциты.

Оценка обеспеченности организма ретинолом. Степень обеспеченности витамином определяется по содержанию его в крови. Используются также показатели темновой адаптации. Косвенным показателем является увеличение активности лизосомных ферментов.

5.2 Витамин Д (кальциферол). Антирахитический витамин.

Химическое строение и свойства. В 1936 г. А. Виндаусом из рыбьего жира был выделен препарат, излечивающий рахит. Он был назван витамином Д3, так как ранее А. Гессом и М. Вейнштоком из растительных масел был выделен эргостерин, получивший название витамин Д1, При воздействии на витамин Д1 УФ-лучей образовывалось излечивающее рахит соединение — витамин Д2, эргокалциферол (кальциферол означает несущий кальций). В растениях при УФ-облучении синтезируются и другие витамеры эргостерина (Д4-7). Наиболее важным из группы витаминов Д является витамин Д3 — холекальциферол. Холекальциферол образуется в качестве промежуточного продукта при биосинтезе холестерола (из 7-дегидрохолестерола) в клетках кожи человека под влиянием УФ-лучей.

Суточная потребность витамина Д. Пищевые источники витамина Д. Витамин Д3

содержится исключительно в животной пище. Особенно богат им рыбий жир. Содержится он в печени, желтке яиц. В растительных маслах и молоке присутствует витамин Д2. Много его в дрожжах. Биологически он менее активен. Суточная потребность для детей колеблется от 10 до 25 мкг (5001000 ME), у взрослых она меньше.

27

Метаболизм витамина Д. Витамины группы Д всасываются подобно витамину А. В печени витамины подвергаются гидроксилированию микросомной системой оксигеназ по С-25 (из витамина Д3 образуется 25(ОН)-Д3 т. е. 25-гидроксихолекальциферол), и затем переносятся током крови с помощью специфического транспортного белка в почки. В почках осуществляется вторая реакция гидроксилирования по С-1 с помощью митохондриальных оксигеназ (образуется 1,25(ОН)2-Д3, т. е. 1,25дигидроксихолекальциферол, или кальцитриол). Эта реакция активируется паратиреоидным гормоном, секретируемым паращитовидной железой, когда уровень кальция в крови снижается. Если уровень кальция адекватен физиологической потребности организма, вторичное гидроксилирование происходит по С-24 (вместо С-1), при этом образуется неактивный метаболит 1,24(ОН)2-Д3. В реакциях гидроксилирования принимает участие витамин С.

Витамин Д3 накапливается в жировой ткани. Выводится главным образом с калом в неизмененном или окисленном виде, а также в виде конъюгатов.

Биохимические функции витамина Д. Витамин Д3 можно рассматривать как прогормон, так как он превращается в 1,25(ОН)2-Д3 действующий аналогично стероидным гормонам. Так, проникая в клетки-мишени, он связывается с белковыми рецепторами, которые мигрируют в ядро клетки. В энтероцитах этот гормон-рецепторный комплекс стимулирует транскрипцию иРНК, несущую информацию на синтез белка-переносчика ионов кальция. Вероятно, витамин отвечает также за синтез Са2+-АТФ-азы в разных клетках. В кишечнике всасывание кальция осуществляется как путем облегченной диффузии (с участием кальцийсвязывающего белка), так и путем активного транспорта (с помощью Са2+-АТФ-азы). Одновременно ускоряется и всасывание фосфора. В костной ткани 1,25(ОН)2-Д3 стимулирует процесс деминерализации (синергично с паратирином). В почках активация витамином 1,25(ОН)2-Д3 кальциевой АТФ-азы мембран почечных канальцев приводи к увеличениию реабсорбции ионов кальция; возрастает и реабсорбция фосфатов. Кальцитриол принимает участие в регуляции роста и дифференцировке клеток костного мозга. Он обладает антиоксидантным и антиканцерогенным действием.

Гиповитаминоз витамина Д. Недостаток витамина Д у детей приводит к заболеванию рахитом. Основные проявления этого заболевания сводятся к симптоматике недостаточности кальция. Прежде всего страдает остеогенез: отмечается деформация скелета конечностей (искривление их в результате размягчения — остеомаляции), черепа (позднее заращение родничков), грудной клетки (появление своеобразных «четок» на ко- стно-хрящевой границе ребер), задерживается прорезывание зубов. Развивается гипотония мышц (увеличенный живот), возрастает нервно-мышечная возбудимость (у младенца выявляется симптом облысения затылочка из-за частого вращения головкой), возможно появление судорог. У взрослого недостаточность кальция в организме

28

приводит к кариесу и остеомаляции; у пожилых — к развитию остеопороза (снижение плотности костной ткани вследствие нарушения остеосинтеза). Разрушение неорганического матрикса объясняется усиленным «вымыванием» кальция из костной ткани и нарушением реабсорбции кальция в почечных канальцах при дефиците витамина Д. На схеме ниже показано угнетение (пунктирная стрелка) всасывания, снижение поступления кальция в кость и уменьшение экскреции кальция при недостатке витамина Д. Одновременно в ответ на гипокальциемию секретируется паратирин и увеличивается (сплошная стрелка) поступление кальция из кости в кровяное русло (вторичный гиперпаратиреоидизм).

Гипервитаминоз Д. Избыточный прием витамина Д приводит к интоксикации и сопровождается выраженной деминерализацией костей — вплоть до их переломов. Содержание кальция в крови повышается. Это приводит к кальцификации мягких тканей, особенно склонны к этому процессу почки (образуются камни и развивается почечная недостаточность).

Повышение уровня кальция (и фосфора) в крови объясняется следующим образом: 1) резорбцией костной ткани (сплошная стрелка); 2) увеличением интенсивности всасывания кальция и фосфора в кишечнике и 3) увеличением их рсабсорбции в почках (т. е. угнетением экскреции с мочой — пунктир).

В нормальных условиях повышение содержания кальция в крови будет приводить к образованию неактивного 24,25(ОН)2-Д3, который не вызывает резорбцию («рассасывание») кости, однако при гипервитаминозс Д этот механизм становится неэффективным. Интересно, что пигментация кожи (загар) является зашитным фактором, предохраняющим от избыточного образования витамина Д при УФ-облучении кожи.

29

Однако у светлокожих жителей северных стран, испытывающих недостаток солнечной инсоляции, витамин-Д-лефицитные состояния, как правило, не развиваются, так как их диета включает рыбий жир.

Оценка обеспеченности организма витамином Д. Обеспеченность организма витамином Д оценивается на основании определения активных форм витамина Д в крови и тканях методом радиоконкурентного анализа; содержания кальция, фосфора и активности щелочной фос-фатазы в сыворотке крови; уровня экскреции с мочой фосфатов. Применяются также нагрузочные пробы с приемом фиксированных доз кальция при парентеральном введении с последующим определением содержания кальция в крови и его экскреции с мочой.

5.3 Витамин Е (токоферол). Витамин размножения.

Химическое строение и свойства. В 20-е годы XX в. Г. Эванс сумел излечить бесплодие у содержащихся на синтетической диете крыс, добавляя им в корм листья салата. Активное соединение, способствующее развитию эмбриона, было выделено также из масел зародышей пшеницы и других семян. Оно получило название токоферол (от греч. tokos — потомство, phero — несу). В 1938 г. токоферол, или витамин Е, был синтезирован химическим путем. Токоферолы — прозрачные, светло-желтые, вязкие масла, хорошо растворимые в большинстве органических растворителей. Медленно окисляются на воздухе, разрушаются под действием УФ-лучей.

Суточная потребность витамина E. Пищевые источники витамина E.

Основной источник токоферола — растительные масла. Поскольку растительное масло обычно экстрагируют из семян при высокой температуре, затем подвергают очистке, дезодорированию и рафинированию, в нем значительно уменьшается содержание токоферола. Более того, избыток растительных масел в рационе усиливает недостаточность витамина Е в организме, так как он расходуется на интенсифицированный потреблением ненасыщенных жирных кислот масел процесс ПОЛ.

Лучшим пищевым источником витамина Е являются орехи, семечки, гречневая крупа, проросшие ростки пшеницы. Он содержится в листьях салата и капусты. Из продуктов животного происхождения более всего токоферола в сливочном масле, сале, мясе, желтке яиц. В молоке этого витамина мало. Суточная потребность — 10 мг. Однако токоферол быстро расходуется в организме, особенно в условиях стимулированного ПОЛ, что имеет место при многих заболеваниях. Окислительной деструкции витамина Е препятствует витамин С. Это обусловлено присутствием в молекуле последнего фенольной группы — донора водорода, который способен «гасить» свободный радикал токоферола. Тем самым витамин С экономит фонд витамина Е С целью усиления антиоксидантного эффекта токоферола его следует назначать с аскорбиновой кислотой.

Метаболизм витамина E. Витамин Е поступает в желудочно-кишечный тракт в составе масел, гидролиз которых липазой и эстеразой приводит к высвобождению витамина. Затем он всасывается и в составе хиломикронов поступает в лимфатическую систему и кровяное русло. В печени витамин связывается с токоферолсвязывающими белками.

Витамин поступает в экстрапеченочные ткани в составе ЛПНП, которые захватываются соответствующими рецепторами. Не всосавшиеся в кишечнике токоферолы выводятся с калом. Продукты метаболизма витамина — токофериновая кислота и ее водорастворимые глюкурониды — выводятся с мочой.

30