Билет №1. Клетка как открытая система. Организация потоков вещества, энергии и интеграция клеток многоклеточного организма.
Клетка является элементарной живой системой. На уровне клетки проявляются большинство основных свойств живой материи - обмен веществ и энергии, рост, развитие, раздражение, самовоспроизведение. Мы можем выделить из клетки отдельные ее компоненты или даже молекулы и_убедиться,что_многие_из_них_обладают специфическими функциональ ными особенностями. Так, например, выделенные актин-миозиновые фибриллы могут сокращаться в ответ на добавление АТФ; вне клетки активно «работают» многие ферменты, участвующие в синтезе или распаде сложных биологически молекул; выделенные рибосомы в присутствии необходимых факторов могут синтезировать белок; в настоящее время разработаны неклеточные системы ферментативного синтеза нуклеиновых кислот и т. д. Можно ли считать все эти отдельно взятые, внутриклеточные компоненты живыми? Вероятно, нет, потому что они обладают только определенным свойством живого, а не всем комплексом таких характеристик. Только клетка является наименьшей единицей, обладающей всеми, вместе взятыми, свойствами, отвечающими определению «живое».Клетка является открытой системой, поскольку ее существование возможно только в условиях постоянного обмена веществом и энергией с окружающей средой.Клетка не только единица строения, но и единица функционирования. Все ее системы взаимосвязаны и функциони¬руют как единое целое.Гетеротрофные клетки получают углеводы извне, а автотрофные клетки сами создают их путем фотосинтеза (из СО2 и Н2О, которые поступают из окружающей среды) или хемосин¬теза. Большая часть углеводов расщепляется с целью высво¬бождения энергии. Получаемая энергия связывается в форме АТФ. Энергию АТФ клетка использует на различные жизнен¬ные процессы - синтез, выделение веществ, движение и т. д. Глюкоза и другие углеводы используются также для биосин¬теза полисахаридов, которые в форме гликолипидов и гликопротеинов включаются в гликокаликс (у животных), в форме гемицеллюлозы и пектиновых веществ - в клеточную стенку растений, в форме хитина - в клеточную стенку грибов. Целлюлоза оболочек растительных клеток синтезируется на плазмалемме или в самой клеточной стенке. Автотрофные зеленые клетки передают большую часть синтезируемых ими углеводов незеленым гетеротрофным клеткам, в основном, в виде сахарозы.Растительные клетки сами синтезируют большую часть аминокислот, входящих в состав белков. Синтез некоторых аминокислот может осуществляться ими в хлоропластах, в митохондриях и цитоплазме. Животные клетки синтезируют лишь некоторые аминокислоты (заменимые), часть аминокислот (незаменимые), животные клетки получают из окружающей среды; для этого они поглощают белки, в основном путем эндоцитоза и расщепляют их затем с помощью ферментов лизосом до аминокислот.Белки, в том числе и ферменты, синтезируются на рибосомах с участием иРНК и тРНК. Этот синтез идет, главным образом, в цитоплазме, а также в хлоропластах и митохондриях. Из цитоплазмы белки переходят в клеточное ядро (гистоновые и негистоновые белки хромосом, белки субъединиц рибосом и др.), в митохондрии и хлоропласты.На рибосомах, связанных с ЭПС, синтезируются резервные и экспортные белки, которые при участии комплекса Гольджи путем экзоцитоза покидают клетку.Все эти и другие процессы осуществляются путем реализации генетической информации, которая сосредоточена в молекулах ДНК ядра, пластид и митохондрий. В названных органеллах происходит репликация ДНК - необходимая предпосылка их идентичного деления и клетки в целом, а также транскрипция, обеспечивающая появление различных видов РНК. На рибосомах при участии всех типов РНК осуществляется трансляция - конечный этап реализации генетической информации или синтез белков. Посредством белков регулируются синтез и расщепление веществ в клетке, синтез АТФ, клеточный рост, подготовка и осуществление деления клетки, и другие процессыТаким образом, клетка является открытой биологической системой, наименьшей единицей жизни - единицей строения функционирования, размножения организмов и их взаи¬мосвязи с окружающей средой.
Билет №2, 29, 36. Антропогенные экосистемы. Роль антропогенных факторов в эволюции видов и биогеоценозов.
Природная эволюция экосистем протекает в масштабе тысячелетий, в настоящее время она подавлена антропогенной эволюцией, связанной с деятельностью человека.Биологическое время антропогенной эволюции имеет масштаб десятилетий и столетий. Антропогенная эволюция экосистем разделяется на два больших класса (по типу процессов): целенаправленная и стихийная. В первом случае человек формирует новые типы искусственных экосистем. Результатом этой эволюции являются агроэкосистемы, садово-парковые ансамбли, морские огороды бурых водорослей, фермы устриц и т.д. Однако к «плановой» эволюции всегда добавляются «неплановые» процессы: происходит внедрение спонтанных видов, например, сорных видов растений и насекомых-фитофагов в агроценозы, расселение случайно занесенных видов и натурализация интродуцированных сельскохозяйственных растений. Человек стремится подавить такие «неплановые» процессы, но часто это оказывается практически невозможно. Стихийная антропогенная эволюция экосистем играет большую роль, чем целенаправленная. Она более разнообразна и, как правило, имеет регрессивный характер: ведет к снижению биологического разнообразия, а иногда и продуктивности. Антропогенная гомогенизация биосферы. Основу этого варианта эволюции составляет появление в экосистемах видов, непреднамеренно (реже преднамеренно) занесенных человеком из других районов. Масштаб процесса столь велик, что принял характер «великого переселения» и «гомогенизации» биосферы под влиянием человека. Заносные виды называются адвентивными, а процесс внедрения (инвазии) адвентивных видов в экосистемы - адвентизацией. Расселению адвентивных видов способствует антропогенное нарушение экосистем и отсутствие видов-антагонистов, которые могут контролировать плотность популяций видов-пришельцев. Отсутствие антагонистов (фитофагов) способствовало расселению североамериканской опунции в Австралии и амазонского водного гиацинта в Африке и Азии. Ярким примером антропогенной гомогенизации биосферы является так называемая «африканизация» американских саванн. Вместе с черными рабами с сеном, на котором в трюмах спали негры, из Африки были завезены семена многих видов африканских злаков. Значительная часть занесенных растений успешно прижилась в саваннах (Hypperhenia ruta, Panicum maximum, Brachiaria mutica и др.). Этому помогли и завезенные из Европы коровы, которые в отличие от местного мелкого скота индейцев были мало подвижны и сильно вытаптывали растительность, нарушая ее покров у водопоев, что облегчало приживание расте- ний-африканцев. Итог этого переселения был поразительным: по сей день деревья и кустарники в этих саваннах - американцы, а большинство видов трав - выходцы из Африки. «Экологические взрывы» вызывает занос видов, которые оказываются ключевыми. Однако чаще такие «взрывы» вовсе не происходят, так как адвентивный вид вообще не вытесняет аборигенные виды из сообщества или если вытесняет, то берет на себя выполнение функциональной роли вытесненного вида. Так, в широколиственных лесах Канады без ущерба для местной флоры прижилось более десятка европейских видов растений, в том числе подорожник, одуванчик, валериана, лопух, мать-и-мачеха и др. Аналогична ситуация с животными. Напугавшая экологов дальневосточная рыба ротан (головешка), которая поедает молодь и икру всех видов рыб, в большинстве экосистем оказалась под контролем щуки, и потому существенного вреда не наносит. Усиление местных синантропных видов. В процессе антропогенной эволюции могут усиливаться некоторые синантропные виды местной флоры и фауны, которые оказались преадаптированными к режиму возрастающих антропогенных нагрузок. В прошлом они были связаны с местами локальных естественных нарушений - горных селей, пороев, вытаптываемых участков экосистем у водопоев, лежбищ крупных фитофагов, таких как зубры или бизоны, и т.д. Яркий пример такой эволюции - формирование экосистем с господством бородача на северном Кавказе. До поры до времени этот злак занимал локальные местообитания на галечнике вдоль рек, однако после резкого возрастания влияния человека в силу преадаптации к режиму нарушений он быстро расселился на огромных площадях. Последствия антропогенной эволюции. Результатами антропогенной эволюции экосистем, кроме того, являются: - уничтожение видов или снижение их генетического разнообразия за счет гибели части экотипов (число страниц в Красных книгах во всех странах год от года увеличивается);
- смещение границ природных зон - развитие процесса опустынивания в степной зоне, вытеснение травяной растительностью лесов у южной границы их распространения;
- возникновение новых экосистем, устойчивых к влиянию человека (например, экосистем сбитых пастбищ с обедненным видовым богатством);
- формирование новых сообществ на антропогенных субстратах при их естественном зарастании или рекультивации. Однако основу антропогенной эволюции экосистем сегодня, безусловно, составляет процесс расселения заносных видов.
Билет №3 роль среды в определении генетического пола и способы, которыми определяется генетический пол
Билет №4, 10 Популяционная генетика. Мутационный процесс. Популяционные волны. Изоляция. Естественный отбор.
Популяционная генетика - раздел генетики, изучающий генофонд популяций и его изменение в пространстве и во времени. Разберемся подробнее в этом определении. Особи не живут поодиночке, а образуют более или менее устойчивые группировки, сообща осваивая среду обитания. Такие группировки, если они самовоспроизводятся в поколениях, а не поддерживаются только за счет пришлых особей, называют популяциями. Например, стадо семги, нерестящейся в одной реке, образует популяцию, потому что потомки каждой рыбы из года в год, как правило, возвращаются в ту же реку, на те же нерестилища. У сельскохозяйственных животных популяцией принято считать породу: все особи в ней единого происхождения, т.е. имеют общих предков, содержатся в сходных условиях и поддерживаются единой селекционной и племенной работой. У аборигенных народов популяция – это члены связанных родством стойбищ.При наличии миграций границы популяций размыты и потому неопределимы. Например, все население Европы – потомки кроманьонцев, заселивших наш континент десятки тысяч лет назад. Изоляция между древними племенами, усиливавшаяся с развитием у каждого из них собственного языка и культуры, вела к различиям между ними. Но обособленность их относительна. Постоянные войны и захваты территории, а в последнее время – гигантская миграция вели и ведут к определенному генетическому сближению народов.Приведенные примеры показывают, что под словом «популяция» следует понимать группировку особей, связанных территориальной, исторической и репродуктивной общностью.Особи каждой популяции отличаются друг от друга, и каждая из них в чем-то уникальна. Многие из этих различий наследственные, или генетические, – они определяются генами и передаются от родителей к детям.Совокупность генов у особей данной популяции называют ее генофондом. Для того чтобы решать проблемы экологии, демографии, эволюции и селекции, важно знать особенности генофонда, а именно: сколь велико генетическое разнообразие в каждой популяции, каковы генетические различия между географически разделенными популяциями одного вида и между различными видами, как генофонд изменяется под действием окружающей среды, как он преобразуется в ходе эволюции, как распространяются наследственные заболевания, насколько эффективно используется генофонд культурных растений и домашних животных. Изучением этих вопросов и занимается популяционная генетика.
ОСНОВНЫЕ ПОНЯТИЯ ПОПУЛЯЦИОННОЙ ГЕНЕТИКИ
Соотношения Харди – Вайнберга. При исследовании генетической динамики популяций, в качестве теоретической, «нулевой» точки отсчета принимают популяцию со случайным скрещиванием, имеющую бесконечную численность и изолированную от притока мигрантов; полагают также, что темпы мутирования генов пренебрежимо малы и отбор отсутствует.
ПОПУЛЯЦИОННО-ГЕНЕТИЧЕСКИЕ ПРОЦЕССЫ
Дрейф генов. Под дрейфом генов понимают случайные изменения генных частот, вызванные конечной численностью популяции. Чтобы понять, как возникает генный дрейф, рассмотрим вначале популяцию минимально возможной численности N = 2: один самец и одна самка. Пусть в исходном поколении самка имеет генотип A1A2, а самец – A3A4. Таким образом, в начальном (нулевом) поколении частоты аллелей A1,A2, A3 и A4 равны 0,25 каждая. Особи следующего поколения могут равновероятно иметь один из следующих генотипов: A1A3, A1A4, A2A3 и A2A4. Допустим, что самка будет иметь генотип A1A3, а самец –A2A3. Тогда в первом поколении аллель A4 теряется, аллели A1 и A2 сохраняют те же частоты, что и в исходном поколении – 0,25 и 0,25, а аллель A3 увеличивает частоту до 0,5. Во втором поколении самка и самец тоже могут иметь любые комбинации родительских аллелей, например A1A2 и A1A2. В этом случае окажется, что аллель A3, несмотря на большую частоту, исчез из популяции, а аллели A1 и A2 увеличили свою частоту (p1 = 0,5, p2 = 0,5). Колебания их частот в конце концов приведут к тому, что в популяции останется либо аллель A1, либо аллель A2; иными словами и самец и самка будут гомозиготны по одному и тому же аллелю: A1 или A2. Ситуация могла сложиться и так, что в популяции остался бы аллель A3 или A4, но в рассмотренном случае этого не произошло.
Описанный нами процесс дрейфа генов имеет место в любой популяции конечной численности, с той лишь разницей, что события развиваются с гораздо меньшей скоростью, чем при численности в две особи. Генный дрейф имеет два важных последствия. Во-первых, каждая популяция теряет генетическую изменчивость со скоростью, обратно пропорциональной ее численности. Со временем какие-то аллели становятся редкими, а затем и вовсе исчезают. В конце концов, в популяции остается один-единственный аллель из имевшихся, какой именно – это дело случая. Во-вторых, если популяция разделяется на две или большее число новых независимых популяций, то дрейф генов ведет к нарастанию различий между ними: в одних популяциях остаются одни аллели, а в других – другие. Процессы, которые противодействуют потере изменчивости и генетическому расхождению популяций, – это мутации и миграции.Мутации. При образовании гамет происходят случайные события – мутации, когда родительский аллель, скажем A1, превращается в другой аллель (A2, A3 или любой иной), имевшийся или не имевшийся ранее в популяции. Например, если бы в нуклеотидной последовательности «…TЦT ТГГ…», кодирующей участок полипептидной цепи «…серин-триптофан…», третий нуклеотид, Т, в результате мутации передался ребенку как Ц, то в соответствующем участке аминокислотной цепи белка, синтезирующегося в организме ребенка, вместо серина был бы расположен аланин, поскольку его кодирует триплет. Регулярно возникающие мутации и образовали в длинном ряду поколений всех обитающих на Земле видов то гигантское генетическое разнообразие, которое мы сейчас наблюдаем.Миграции. Популяции одного вида не изолированы друг от друга: всегда есть обмен особями – миграции. Мигрирующие особи, оставляя потомство, передают следующим поколениям аллели, которых в этой популяции могло вовсе не быть или они были редки; так формируется поток генов из одной популяции в другую. Миграции, как и мутации, ведут к увеличению генетического разнообразия. Кроме того, поток генов, связывающий популяции, приводит к их генетическому сходству.Отбор. Различия в плодовитости, выживаемости, половой активности и т.п. приводят к тому, что одни особи оставляют больше половозрелых потомков, чем другие – с иным набором генов. Различный вклад особей с разными генотипами в воспроизводство популяции называют отбором.
Генетические параметры популяции. При описании популяций или их сравнении между собой используют целый ряд генетических характеристик.
Полиморфизм. Популяция называется полиморфной по данному локусу, если в ней встречается два или большее число аллелей. Если локус представлен единственным аллелем, говорят о мономорфизме. Исследуя много локусов, можно определить среди них долю полиморфных, т.е. оценить степень полиморфизма, которая является показателем генетического разнообразия популяции.
Гетерозиготность. Важной генетической характеристикой популяции является гетерозиготность – частота гетерозиготных особей в популяции. Она отражает также генетическое разнообразие.
Коэффициент инбридинга. С помощью этого коэффициента оценивают распространенность близкородственных скрещиваний в популяции.
Ассоциация генов. Частоты аллелей разных генов могут зависеть друг от друга, что характеризуется коэффициентами ассоциации.
Генетические расстояния. Разные популяции отличаются друг от друга по частоте аллелей. Для количественной оценки этих различий предложены показатели, называемые генетическими расстояниями.
Можно выделить четыре основных элементарных фактора эволюции: мутационный процесс, популяционные волны, изоляция, естественный отбор.Мутационный процесс.Постоянная мутационная изменчивость и комбинации при скрещиваниях дают новые сочетания генов в генофонде, что неизбежно приводит к наследственным изменениям в популяции. Мутации — элементарный эволюционный материал, а процесс возникновения мутаций, мутационный процесс, — постоянно действующий элементарный эволюционный фактор, увеличивающий генетическую гетерогенность популяции вследствие сохранения рецессивных мутаций в гетерозиготах. Рецессивные мутации в гетерозиготном состоянии составляют скрытый резерв изменчивости, который может быть использован естественным отбором при изменении условий существования. Большинство мутаций являются вредными. Обезвреживание мутаций происходит путем перевода их в гетерозиготное состояние в результате полового процесса. Но многие мутации в гетерозиготном состоянии повышают относительную жизнеспособность особей. Механизмом, поддерживающим гетерозиготность особей, также является половой процесс.Можно сказать, что мутационный процесс — это фактор-поставщик элементарного эволюционного материала.
Популяционные волны.Периодические или апериодические колебания численности особей популяции характерны для всех без исключения живых организмов. Причинами таких колебаний могут быть различные абиотические и биотические факторы среды. Действие популяционных волн, или волн жизни, предполагает неизбирательное, случайное уничтожение особей, благодаря чему редкий перед колебанием численности генотип (аллель) может сделаться обычным и быть подхваченным естественным отбором. Если в дальнейшем численность популяции восстановится за счет этих особей, то это приведет к случайному изменению частот генов в генофонде данной популяции. Популяционные волны являются поставщиком эволюционного материала.
Классификация популяционных волн
1. Периодические колебания численности короткоживущих организмов характерны для большинства насекомых, однолетних растений, большинства грибов и микроорганизмов. В основном эти изменения вызваны сезонным колебанием численности.2. Непериодические колебания численности, зависящие от сложного сочетания разных факторов. В первую очередь они зависят от благоприятных для данного вида (популяции) отношений в пищевых цепочках: уменьшение хищников, увеличение кормовых ресурсов. Обычно такие колебания затрагивают несколько видов и животных, и растений в биогеоценозах, что может привести к коренным перестройкам всего биогеоценоза.3. Вспышки численности видов в новых районах, где отсутствуют их естественные враги.4. Резкие непериодические колебания численности, связанные с природными катастрофами (в результате засухи или пожаров). Влияние популяционных волн особенное заметно в популяциях очень малой величины (обычно при численности размножающихся особей не более 500). Именно в этих условиях популяционные волны могут как бы подставлять под действие естественного отбора редкие мутации или устранять уже довольно обычные варианты.
Изоляция.Под изоляцией понимается возникновение любых барьеров, нарушающих панмиксию (свободное скрещивание). В зависимости от их природы выделяют два основных типа изоляции: пространственную и биологическую (репродуктивную).
Пространственная изоляция может существовать в двух проявлениях: изоляция за счет географических барьеров и изоляция расстоянием (без заметных географических барьеров, просто в силу большого расстояния между популяциями или отдельными особями). Возникновение пространственной изоляции связано с радиусом репродуктивной активности для особей вида.
Биологическая изоляция приводит к нарушению скрещивания или препятствует воспроизведению нормального потомства, что обеспечивается двумя группами механизмов: устраняющие скрещивание (докопуляционная изоляция) и изоляция при скрещивании (послекопуляционная изоляция). Спариванию близких форм препятствуют различия во время половой активности и созревания половых продуктов. В природе обычна биотипическая изоляция, при которой потенциальные партнеры по спариванию не встречаются, так как они часто обитают в разных местах.
Естественный отбор.Ч. Дарвин определил естественный отбор как сохранение особей с полезными и гибель с вредными индивидуальными отклонениями. Особь является элементарным объектом отбора. Но особи отбираются в пределах популяции. Отсюда популяция — это поле действия отбора как элементарного фактора эволюции. Сфера действия естественного отбора затрагивает все жизненно важные признаки и свойства особи. Успех в размножении в первую очередь зависит от общей жизнеспособности особи. Чрезвычайно существенно, что отбор всегда идет по фенотипам. Это означает, что непосредственной точкой приложения отбора может быть лишь конкретный результат реализации генетической информации в виде определенного признака или свойства. В фенотипе особи отражаются особенности генотипа, поэтому в череде поколений отбор по фенотипам сводится к отбору определенных генотипов. При этом единицей отбора всегда оказывается не отдельный признак или свойство, а весь генотип, вся особь в целом. Признак оказывается лишь точкой приложения отбора. Следовательно, под естественным отбором нужно понимать избирательное (дифференцированное) воспроизведение генотипов (или генных комплексов). Половой отбор — естественный отбор, касающийся признаков особей одного пола. Обычно половой отбор вытекает из борьбы между самцами (в редких случаях — между самками) за возможность вступить в размножение. Половой отбор — не самостоятельный фактор эволюции, а всего лишь частный случай внутривидового естественного отбора.
Индивидуальный отбор сводится к дифференцированному размножению отдельных особей, обладающих преимуществами в борьбе за существование в пределах популяции. Основан на соревновании особей внутри популяции. Групповой отбор дает преимущественное размножение особей какой-либо группы. При групповом отборе в эволюции закрепляются признаки, благоприятные для группы, но не всегда благоприятные для особей. В групповом отборе группы особей соревнуются друг с другом в создании и поддержании целостности надорганизменных систем. Искусственный отбор проводится человеком в целях создания новых пород или сортов, удовлетворяющих его потребностям.
Билет №5
4. Центральная догма молекулярной биологии — обобщающее наблюдаемое в природе правило реализации генетической информации: информация передаётся от нуклеиновых кислот к белку, но не в обратном направлении. Правило было сформулировано Френсисом Криком в 1958 году[1] и приведено в соответствие с накопившимися к тому времени данными в 1970 году[2]. Переход генетической информации от ДНК к РНК и от РНК к белку является универсальным для всех без исключения клеточных организмов, лежит в основе биосинтеза макромолекул. Репликации генома соответствует информационный переход ДНК > ДНК. В природе встречаются также переходы РНК > РНК и РНК > ДНК (например у некоторых вирусов), а также изменение конформации белков, передаваемое от молекулы к молекуле.
Универсальные способы передачи биологической информации
3 класса способов передачи информации, описываемые догмой
Общие Специальные Неизвестные
ДНК > ДНК РНК > ДНК белок > ДНК
ДНК > РНК РНК > РНК белок > РНК
РНК > белок ДНК > белок белок > белок
В живых организмах встречаются три вида гетерогенных, то есть состоящих из разных мономеров полимера — ДНК, РНК и белок. Передача информации между ними может осуществляться 3 х 3 = 9 способами. Центральная догма разделяет эти 9 типов передачи информации на три группы:
• Общий — встречающиеся у большинства живых организмов;
• Специальный — встречающиеся в виде исключения, у вирусов и у мобильных элементов генома или в условиях биологического эксперимента;
• Неизвестные — не обнаружены.
Репликация ДНК (ДНК > ДНК)
ДНК — основной способ передачи информации между поколениями живых организмов, поэтому точное удвоение (репликация) ДНК очень важна. Репликация осуществляется комплексом белков, которые расплетают хроматин, затем двойную спираль. После этого ДНК полимераза и ассоциированные с ней белки, строят на каждой из двух цепочек идентичную копию.
Транскрипция (ДНК > РНК)
Транскрипция — биологический процесс, в результате которого информация, содержащаяся в участке ДНК, копируется на синтезируемую молекулу информационной РНК. Транскрипцию осуществляют факторы транскрипции и РНК-полимераза. В эукариотической клетке первичный транскрипт (пре-иРНК) часто редактируется. Этот процесс называется сплайсингом.
Трансляция (РНК > белок)
Зрелая иРНК считывается рибосомами в процессе трансляции. В прокариотических клетках процесс транскрипции и трансляции не разделён пространственно, и эти процессы сопряжены. В эукариотических клетках место транскрипции клеточное ядро отделено от места трансляции (цитоплазмы) ядерной мембраной, поэтому иРНК транспортируется из ядра в цитоплазму. иРНК считывается рибосомой в виде трёхнуклеотидных «слов». Комплексы факторов инициации и факторов элонгации доставляют аминоацилированные транспортные РНК к комплексу иРНК-рибосома.
5. Обратная транскрипция — это процесс образования двуцепочечной ДНК на матрице одноцепочечной РНК. Данный процесс называется обратной транскрипцией, так как передача генетической информации при этом происходит в «обратном», относительно транскрипции, направлении.[1]
Идея обратной транскрипции вначале была очень непопулярна, так как противоречила центральной догме молекулярной биологии, которая предполагала, что ДНК транскрибируется в РНК и далее транслируется в белки. Встречается у ретровирусов, например, ВИЧ и в случае ретротранспозонов.
Трансдукция (от лат. transductio — перемещение) — процесс переноса бактериальной ДНК из одной клетки в другую бактериофагом. Общая трансдукция используется в генетике бактерий для картирования генома и конструирования штаммов. К трансдукции способны как умеренные фаги, так и вирулентные, последние, однако, уничтожают популяцию бактерий, поэтому трансдукция с их помощью не имеет большого значения ни в природе, ни при проведении исследований.
Общая (неспецифическая) трансдукция
Осуществляется фагом P1, существующим в бактериальной клетке в виде плазмиды, фагами P22 и Mu, встраивающимися в любой участок бактериальной хромосомы. После индуцирования профага с вероятностью в 10?5 на одну клетку возможна ошибочная упаковка фрагмента ДНК бактерии в капсид фага, ДНК самого фага в нём в этом случае нет. Длина этого фрагмента равна длине нормальной фаговой ДНК, его происхождение может быть любым: случайный участок хромосомы, плазмида, другие умеренные фаги.
Попадая в другую бактериальную клетку, фрагмент ДНК может включаться в её геном, обычно путём гомологичной рекомбинации. Перенесённые фагом плазмиды способны замыкаться в кольцо и реплицироваться уже в новой клетке. В ряде случае фрагмент ДНК не встраивается в хромосому реципиента, не реплицируется, но сохраняется в клетке и транскрибируется. Это явление носит название абортивной трансдукции.
[править] Специфическая трансдукция
Наиболее хорошо изучена специфическая трансдукция на примере фага ?. Этот фаг встраивается только в один участок (att-сайт) хромосомы E. coli с определённой последовательностью нуклеотидов (гомологичной att-участку в ДНК фага). Во время индукции его исключение может пройти с ошибкой (вероятность 10?3—10?5 на клетку): вырезается фрагмент тех же размеров что и ДНК фага, но с началом не в том месте. При этом часть генов фага теряется, а часть генов E. coli захватывается им. Вероятность переноса гена в этом случае падает при увеличении расстояния от него до att-сайта.
Для каждого специфически встраивающегося в хромосому умеренного фага характерен свой att-сайт и, соответственно, расположенные рядом с ним гены, которые он способен передавать. Ряд фагов может встраиваться в любое место на хромосоме и переносить любые гены по механизму специфической трансдукции. Кроме того, в хромосоме обычно есть последовательности, частично гомологичные att-участку ДНК фага. При повреждении полностью гомологичного att-сайта можно добиться включения фага в хромосому по этим последовательностям и передачу в ходе специфической трансдукции генов, соседних уже с ними.
Когда умеренный фаг, несущий бактериальные гены, встраивается в хромосому новой бактерии-хозяина, она содержит уже два одинаковых гена — собственный и принесённый извне. Поскольку фаг лишён части собственных генов, часто он не может индуцироваться и размножиться. Однако при заражении этой же клетки «вспомогательным» фагом того же вида, индуцирование дефектного фага становится возможным. Из хромосомы выходят и реплицируются как ДНК нормального «вспомогательного» фага, так и ДНК дефектного, вместе с переносимыми им бактериальными генами. Поэтому около 50% образующихся фаговых частиц несут бактериальную ДНК. Это явление носит название трансдукции с высокой частотой
Билет №6. Генетическая инженерия и ее перспективы в лечении наследственных болезней. Профилактика наследственных заболеваний.
Генетическая инжене́рия (генная инженерия) — совокупность приёмов, методов и технологий получения рекомбинантных РНК и ДНК, выделения генов из организма (клеток), осуществления манипуляций с генами и введения их в другие организмы.Генетическая инженерия не является наукой в широком смысле, но является инструментом биотехнологии, используя методы таких биологических наук, как молекулярная и клеточная биология, цитология, генетика, микробиология, вирусология.Процесс синтеза генов в настоящее время разработан очень хорошо и даже в значительной степени автоматизирован. Существуют специальные аппараты, снабжённые ЭВМ, в памяти которых закладывают программы синтеза различных нуклеотидных последовательностей. Такой аппарат синтезирует отрезки ДНК длиной до 100—120 азотистых оснований (олигонуклеотиды). Получила распространение техника, позволяющая использовать для синтеза ДНК, в том числе мутантной, полимеразную цепную реакцию. Термостабильный фермент, ДНК-полимераза, используется в ней для матричного синтеза ДНК, в качестве затравки которого применяют искусственно синтезированные кусочки нуклеиновой кислоты — олигонуклеотиды. Фермент обратная транскриптаза позволяет с использованием таких затравок (праймеров) синтезировать ДНК на матрице выделенной из клеток РНК. Синтезированная таким способом ДНК называется комплементарной (РНК) или кДНК. Изолированный, «химически чистый» ген может быть также получен из фаговой библиотеки. Так называется препарат бактериофага, в геном которого встроены случайные фрагменты из генома или кДНК, воспроизводимые фагом вместе со всей своей ДНК.Чтобы встроить ген в вектор, используют ферменты — рестриктазы и лигазы, также являющиеся полезным инструментом генной инженерии. С помощью рестриктаз ген и вектор можно разрезать на кусочки. С помощью лигаз такие кусочки можно «склеивать», соединять в иной комбинации, конструируя новый ген или заключая его в вектор. За открытие рестриктаз Вернер Арбер, Даниел Натанс и Хамилтон Смит также были удостоены Нобелевской премии (1978 г.).Техника введения генов в бактерии была разработана после того, как Фредерик Гриффит открыл явление бактериальной трансформации. В основе этого явления лежит примитивный половой процесс, который у бактерий сопровождается обменом небольшими фрагментами нехромосомной ДНК, плазмидами. Плазмидные технологии легли в основу введения искусственных генов в бактериальные клетки.Значительные трудности были связаны с введением готового гена в наследственный аппарат клеток растений и животных. Однако в природе наблюдаются случаи, когда чужеродная ДНК (вируса или бактериофага) включается в генетический аппарат клетки и с помощью её обменных механизмов начинает синтезировать «свой» белок. Учёные исследовали особенности внедрения чужеродной ДНК и использовали как принцип введения генетического материала в клетку. Такой процесс получил название трансфекция.Если модификации подвергаются одноклеточные организмы или культуры клеток многоклеточных, то на этом этапе начинается клонирование, то есть отбор тех организмов и их потомков (клонов), которые подверглись модификации. Когда же поставлена задача получить многоклеточные организмы, то клетки с изменённым генотипом используют для вегетативного размножения растений или вводят в бластоцисты суррогатной матери, когда речь идёт о животных. В результате рождаются детеныши с изменённым или неизменным генотипом, среди которых отбирают и скрещивают между собой только те, которые проявляют ожидаемые изменения.
Билет №7. Паразитизм, как экологический феномен.
Паразитизм — это универсальное, широко распространенное к живой природе явление, состоящее в использовании одного ор¬ганизма другим в качестве источника питания. При этом паразит причиняет хозяину вред вплоть до гибели.
Пути возникновения паразитизма.
1. Переход свободноживущих форм (хищников) к эктопаразитизму при увеличении времени возможного существования без пищи и времени контакта с жертвой.
2. Переход от комменсализма (сотрапезничества, нахлебничества, ситуации, когда хозяин служит лишь средой обитания) к эндопаразитизму в случае использования комменсалами не только отходов, но части пищевого рациона хозяина и даже его тканей.
3. Первичный эндопаразитизм в результате случайного, часто неоднократного заноса в пищеварительную систему хозяина яиц и цист паразитов.
Особенности среды обитания паразитов.
1. Постоянный и благоприятный уровень температуры и влаж¬ности.
2. Обилие пищи.
3. Защита от неблагоприятных факторов.
4. Агрессивный химический состав среды обитания (пище¬варительные соки).
Особенности паразитов.
1. Наличие двух сред обитания: среда первого порядка — ор¬ганизм хозяина, среда второго порядка — внешняя среда.
2. Паразит имеет меньшие размеры тела и меньшую продол¬жительность жизни по сравнению с хозяином.
3. Паразиты отличаются высокой способностью к размноже¬нию, обусловленной обилием пищи.
4. Количество паразитов в организме хозяина может быть очень велико.
5. Паразитический образ жизни является их видовой особен¬ностью.
Классификация паразитов
В зависимости от времени, проводимом на хозяине, паразиты могут быть постоянные, если никогда не встречаются в свободноживущем состоянии (вши, чесоточные зудни, малярийный плазмо¬дий), и временные, если связаны с хозяином только во время приема пищи (комары, клопы, блохи).
По обязательности паразитического образа жизни паразиты бывают облигатные, если паразитический образ жизни — их не¬пременная видовая особенность (например, гельминты), и факуль¬тативные, способные вести непаразитический образ жизни (мно¬гие паразиты растений).
По месту обитания на хозяине паразиты делятся на эктопаразитов, живущих на поверхности организма хозяина (человеческая вошь, комары, москиты, слепни), внутрикожных паразитов, обитающих в толще кожных покровов хозяина (чесоточный зудень), полостных паразитов, обитающих в полостях различных органов хозяина, сообщающихся с внешней средой (бычий и свиной цеп¬ни) и собственно эндопаразитов, обитающих во внутренних орга¬нах организма хозяина, клетках и плазме крови (эхинококк, трихинелла, малярийный плазмодий).
В дикой природе паразиты регулируют численность особей и популяциях хозяина.
Особенности жизнедеятельности паразитов
Жизненный цикл паразитов может быть простым и сложным. Простой цикл развития происходит без участия промежуточного хозяина, он характерен для эктопаразитов, простейших, некото¬рых геогельминтов. Сложный жизненный цикл характерен для паразитов, имеющих не менее чем одного промежуточного хозяи¬на (широкий лентец).
Расселение паразита осуществляется в течение всей его жиз¬ни. Неактивная покоящаяся стадия развития обеспечивает про¬должение существования паразита во времени, активная подвиж¬ная стадия — расселение в пространстве.
В целом, хозяин — это существо, организм которого является временным или постоянным местообитанием и источником пита¬ния паразита. Один и тот же вид хозяина может быть местообита¬нием и источником питания для нескольких видов паразитов.
Для паразитов характерна смена хозяев, связанная с размно¬жением или с развитием паразита. У многих паразитов имеется несколько хозяев. Окончательный (дефинитивный) хозяин — это вид, в котором паразит находится во взрослом состоянии и раз¬множается половым путем.
Промежуточных хозяев может быть один и более. Это виды, в которых паразит находится на личиночной стадии развития, а если размножается, то, как правило, бесполым путем.
Резервуарный хозяин — это хозяин, в организме которого па¬разит сохраняет свою жизнеспособность, и где происходит накоп¬ление паразита.
Человек является идеальным хозяином для паразита, потому что:
1) человек представлен многочисленными, повсеместно рас¬селенными популяциями;
2) человек постоянно соприкасается с природными очагами болезней диких животных;
3) человек нередко живет в условиях перенаселения, что облегчает передачу паразита;
4) человек контактирует со многими видами животных
5) человек всеяден.
Механизмы передачи паразита: фекально-оральный, воздушно-капельный, трансмиссивный, контагиозный
Наиболее часто встречающимися у человека паразитами явля¬ются разнообразные черви - гельминты, вызывающие заболева¬ния группы гельминтозов. Различают био-, геогельминтозы и контактные гельминтозы.
Биогельминтозы - это заболевания, передача которых челове¬ку происходит с участием животных, в чьем организме развивает¬ся возбудитель (эхинококкоз, альвеококкоз, тениоз, тениаринхоз дифиллоботриоз, описторхоз, трихинеллез).
Геогельминтозы - это болезни, передача которых человеку происходит через элементы внешней среды, где развиваются ли¬чиночные стадии паразита (аскаридоз, трихоцефалез, некатороз)
Контактные гельминтозы характеризуются передачей парази¬та непосредственно
от больного или через окружающие его пред¬меты (энтеробиоз, гименолепидоз).
Билет №8. Роль наследственности и среды в формировании нормального и патологически измененного фенотипа человека.
Фенотип человека, формирующийся на различных стадиях его онтогенеза, так же как фенотип любого живого организма, является в первую очередь продуктом реализации наследственной программы. Степень зависимости результатов этого процесса от условий, в которых он протекает, у человека определяется его социальной природой (см. гл. 12).Определяя формирование фенотипа организма в процессе его онтогенеза, наследственность и среда могут быть причиной или играть определенную роль в развитии порока или заболевания. Вместе с тем доля участия генетических и средовых факторов варьирует при разных состояниях. С этой точки зрения формы отклонений от нормального развития принято делить на три основные группы.Наследственные болезни. Развитие этих заболеваний целиком обусловлено дефектностью наследственной программы, а роль среды заключается лишь в модифицировании фенотипических проявлений болезни. К этой группе патологических состояний относят хромосомные болезни, в основе которых лежат хромосомные и геномные мутации, и моногенно наследуемые заболевания, обусловленные генными мутациями. В качестве примера можно назвать болезнь Дауна, гемофилию, фенилкетонурию.Наследственные болезни всегда связаны с мутацией, однако фенотипическое проявление последней, степень выраженности патологических симптомов у разных индивидумов могут различаться. В одних случаях эти различия обусловлены дозой мутантного аллеля в генотипе. В других — степень выраженности симптомов зависит от факторов среды, в том числе от наличия специфических условий для проявления соответствующей мутации. Так, гомозиготы по аллелю HbS HbS болеют анемией, а гетерозиготы НbА HbS в обычных условиях вполне здоровые люди, тогда как при пониженном парциальном давлении кислорода, например в условиях высокогорья, они страдают от гипоксии. Неблагоприятные последствия нарушения развития центральной нервной системы, приводящие к слабоумию у гомозигот по аллелю фенилкетонурии, удается в значительной степени снизить, применяя на протяжении определенного отрезка времени после рождения искусственную диету, лишенную аминокислоты фенилаланина. Подагра, обусловленная патологически измененным геном, развивается при длительном неблагоприятном воздействии среды, связанном с особенностями питания. Ее проявления также можно ослабить диетотерапией.Мультифакториальные заболевания, или болезни с наследственным предрасположением. К ним относится большая группа распространенных заболеваний, особенно болезни зрелого и преклонного возраста, такие, как гипертоническая болезнь, ишемическая болезнь сердца, язвенная болезнь желудка и двенадцатиперстной кишки и т.д. Причинными факторами их развития выступают неблагоприятные воздействия среды, однако реализация этих воздействий зависит от генетической конституции, определяющей предрасположенность организма. Соотносительная роль наследственности и среды в развитии разных болезней с наследственным предрасположением неодинакова.Лишь немногие формы патологии обусловлены исключительно воздействием факторов среды—травма, ожог, обморожение, особо опасные инфекции. Но и при этих формах патологии течение и исход заболевания в значительной степени определяются генетическими факторами.
Билет №9. Уровни организации жизни Проявление главных свойств жизни на разных уровнях ее организации.
Различают такие уровни организации живой материи - уровни биологической организации: молекулярный, клеточный, тканевый, органный, организменный, популяционно-видовой и экосистемный.Молекулярный уровень организации - это уровень функционирования биологических макромолекул - биополимеров: нуклеиновых кислот, белков, полисахаридов, липидов, стероидов. С этого уровня начинаются важнейшие процессы жизнедеятельности: обмен веществ, превращение энергии, передача наследственной информации. Этот уровень изучают: биохимия, молекулярная генетика, молекулярная биология, генетика, биофизика.Клеточный уровень - это уровень клеток (клеток бактерий, цианобактерий, одноклеточных животных и водорослей, одноклеточных грибов, клеток многоклеточных организмов). Клетка - это структурная единица живого, функциональная единица, единица развития. Этот уровень изучают цитология, цитохимия, цитогенетика, микробиология.Тканевый уровень организации - это уровень, на котором изучается строение и функционирование тканей. Исследуется этот уровень гистологией и гистохимией.Органный уровень организации - это уровень органов многоклеточных организмов. Изучают этот уровень анатомия, физиология, эмбриология.Организменный уровень организации - это уровень одноклеточных, колониальных и многоклеточных организмов. Специфика организменного уровня в том, что на этом уровне происходит декодирование и реализация генетической информации, формирование признаков, присущих особям данного вида. Этот уровень изучается морфологией (анатомией и эмбриологией), физиологией, генетикой, палеонтологией.Популяционно-видовой уровень - это уровень совокупностей особей - популяцийивидов. Этот уровень изучается систематикой, таксономией, экологией, биогеографией,генетикой популяций. На этом уровне изучаются генетические иэкологические особенности популяций, элементарныеэволюционные факторыи их влияние на генофонд (микроэволюция), проблема сохранения видов.Экосистемный уровень организации - это уровень микроэкосистем, мезоэкосистем, макроэкосистем. На этом уровне изучаются типы питания, типы взаимоотношений организмов и популяций в экосистеме, численность популяций, динамика численности популяций, плотность популяций, продуктивность экосистем, сукцессии. Этот уровень изучает экология.Выделяют такжебиосферный уровень организации живой материи. Биосфера - это гигантская экосистема, занимающая часть географической оболочки Земли. Это мега-экосистема. В биосфере происходит круговорот веществ и химических элементов, а также превращение солнечной энергии.
Транскрипционный аппарат клетки.
Транскрипция (ДНК → РНК).Транскрипция — биологический процесс, в результате которого информация, содержащаяся в участке ДНК, копируется на синтезируемую молекулу информационной РНК. Транскрипцию осуществляют факторы транскрипции и РНК-полимераза. В эукариотической клетке первичный транскрипт (пре-иРНК) часто редактируется. Этот процесс называется сплайсингом.
Билет №10 (см. №4)
Билет №11 Межаллельные взаимодействия генов
Взаимодействовать могут гены как одной аллельной пары (внутриаллельное взаимодействие), так и разных (межаллельное взаимодействие). Часто взаимоотношения аллельных генов выражаются в доминантности (полной и неполной) и рецессивности. Полное доминирование наблюдается в том случае, когда доминантный ген полностью подавляет действие рецессивного гена (например, желтый и зеленый цвет горошин). При неполном доминировании доминантный ген не полностью подавляет действие рецессивного гена, наблюдается промежуточное наследование (например, окраска цветков у ночной красавицы). В сериях множественных аллелей (когда аллельных генов больше, чем два) эти отношения более сложные. Один и тот же ген может выступать как доминантный по отношению к одной аллели и как рецессивный по отношению к другой. Например, ген гималайской окраски кроликов доминантен по отношению к белой, но рецессивен по отношению к серой окраске шерсти (шиншилла). При кодоминировании ни один из аллельных генов не подавляет другой, они равноценны. Если два кодоминантных гена находятся в одном генотипе, они оба проявляются фенотипически. Например, четвертая группа крови у человека по АВО-системе детерминируется одновременным присутствием в генотипе двух кодоминантных генов JA и JB. Ген JA детерминирует синтез антигена А в эритроцитах, а ген JB — антигена В.Известно много примеров, когда гены одной аллельной пары влияют на характер проявления генов другой аллельной пары. Например, развитие разной формы гребня у кур определяется взаимодействием двух пар аллелей: присутствие в генотипе доминантного гена А определяет развитие розовидного гребня, доминантного гена В — гороховидного; одновременное присутствие в генотипе обоих доминантных генов (АВ) — ореховидного, а рецессивные гомозиготы по обоим аллелям (ааbb) имеют листовидный гребень. Вид межаллельного взаимодействия генов, при котором одновременное присутствие в генотипе доминантных (рецессивных) генов разных аллельных пар приводит к проявлению нового признака, называется комплементарностью.Например, у кур доминантный ген С детерминирует синтез пигмента, а доминантная аллель другого гена подавляет действие гена С, и куры с генотипом С-I — имеют белое оперение.Установлено, что многие количественные и некоторые качественные признаки у растений, животных и человека определяются не одной, а несколькими парами взаимодействующих генов, например рост, масса тела, молочная продуктивность крупного рогатого скота, яйценоскость кур, цвет кожи у человека и др. Чем больше в генотипе доминантных генов, тем сильнее проявляется признак. Такой вид взаимодействия генов разных аллельных пар, когда они отвечают за степень проявления одного признака, называется полимерией.Нередко наблюдается и противоположное явление, когда один ген влияет на проявление нескольких признаков. Такое явление называется плейотропией. Так, у мухи дрозофилы ген, определяющий отсутствие пигмента в глазах (белые глаза), снижает плодовитость и уменьшает продолжительность жизни. У человека аномалия пальцев («паучьи пальцы») сопровождается нарушением строения хрусталика и пороками развития сердечно-сосудистой системы.Приведенные примеры убеждают в том, что генотип любого организма следует рассматривать не как простую сумму генов, а как сложную систему взаимодействующих генов. Эта целостность генотипа возникла исторически в процессе эволюции вида. Она выражается прежде всего в тесном взаимодействии отдельных его компонентов — генов. Один и тот же ген, попав в разные генотипы, может проявлять себя по-разному. Появление новых генов в генотипе (мутации) чаще всего на первых порах сопровождается несбалансированностью генов и снижением жизнеспособности организма. Какой фенотип разовьется на основе такого генотипа, зависит как от самого генотипа, так и от конкретных условий среды. Фенотип является результатом взаимодействия генотипа и факторов внешней среды в процессе индивидуального развития организма.
Билет №12. Биологические и социальные аспекты старения и смерти. Проблема долголетия. Понятие о геронтологии и гериатрии.
Старение — в биологии процесс постепенного нарушения и потери важных функций организма или его частей, в частности способности к размножению и регенерации. Вследствие старения организм становится менее приспособленным к условиям окружающей среды, уменьшает и теряет свою способность бороться с хищниками и противостоять болезням и травмам.
Старость — закономерно наступающий период возрастного развития, заключительный этап онтогенеза. Старение — неизбежный биологический разрушительный процесс, приводящий к постепенному снижению адаптационных возможностей организма; характеризуется развитием так называемой возрастной патологии и увеличением вероятности смерти. Исследованием закономерностей старения занимается геронтология, а изучением возрастной патологии — гериатрия.
Для старения характерны гетерохронность (различие во времени наступления старения отдельных органов и тканей), гетеротопность (неодинаковая выраженность старения в различных органах), гетерокинетичность (развитие возрастных изменений с различной скоростью), гетерокатефтентность (разнонаправленность возрастных изменений клеток и органов).
Билет № 13. Методы изучения генетики человека
Генеалогический метод, или метод анализа родословных, включает следующие этапы:
1. Сбор сведений у пробанда о наличии или отсутствии анализируемого признака (чаще заболевания) у его родственников и составление легенды о каждом из них (словесного описания). Для более точного результата необходимо собрать сведения о родственниках в трех-четырех поколениях.
2. Графическое изображение родословной с использованием условных обозначений. Каждый родственник пробанда получает свой шифр.
3. Анализ родословной, решающий следующие задачи:
1) определение группы заболеваний, к которой относится исследуемая болезнь (наследственной, мультифакториальной или группы фенокопий);
2) определение типа и варианта наследования;
3) определение вероятности проявления заболевания у про-банда и других родственников.
Цитогенетические методы
Цитологические методы связаны с проведением окрашивания цитологического материала и последующей микроскопией. Они позволяют определить нарушения структуры и числа хромосом. В эту группу методов входят:
1) метод определения Х-хроматина интерфазных хромосом путем окрашивания нефлюоресцентными или флюоресцентными красителями;
2) метод определения Y-хроматина интерфазных хромосом окрашиванием флюоресцентными красителями;
3) рутинный метод окрашивания метафазных хромосом для определения количества и групповой принадлежности хромосом, идентификации 1, 2, 3, 9, 16 хромосом и Y-хромосомы;
4) метод дифференциального окрашивания метафазных хромосом для идентификации всех хромосом по особенностям поперечной исчерченности. В этом методе чаще всего для микроскопии используются лимфоциты, фибробласты, клетки костного мозга, половые клетки, клетки волосяной луковицы. Биохимические методы
В эту группу входят методы, применяемые в основном при дифференциальной диагностике наследственных нарушений обмена веществ при известном дефекте первичного биохимического продукта данного гена.
Все биохимические методы делят на качественные, количественные и полуколичественные. Для исследования берутся кровь, моча или амниотическая жидкость.
Качественные методы более простые, недорогие и менее трудоемкие, поэтому применяются для массового скрининга (например, исследование новорожденных в роддоме на фенилке-тонурию).
Количественные методы более точные, но и более трудоемкие и дорогостоящие. Поэтому их применяют лишь по специальным показаниям и в случаях, когда скрининг, проведенный качественными методами, дал положительный результат.
Показания для применения биохимических методов:
1) умственная отсталость неясной этиологии;
2) снижение зрения и слуха;
3) непереносимость некоторых пищевых продуктов;
4) судорожный синдром, повышенный или пониженный тонус мышц.
ДНК-диагностика
Это наиболее точный метод диагностики моногенных наследственных заболеваний. Преимущества метода:
1) позволяет определить причину заболевания на генетическом уровне;
2) выявляет минимальные нарушения структуры ДНК;
3) малоинвазивен;
4) не требует повторения.
В основе метода лежит увеличение копий фрагментов ДНК различными способами. Близнецовый метод
Применяется в основном для определения относительной роли наследственности и факторов окружающей среды в возникновении того или иного заболевания. При этом изучаются монозиготные и дизиготные близнецы.
Билет №14 Иммунитет - вопрос Сперматогенез - пр. Задача на дерматоглифику
Билет №15 Принцип компарментации. Биологические мембраны. Задача дерматоглифика. Препарат раст. Клетка чешуи лука
Билет №16. воспроизведение на молекулярном и клеточном уровне
1.Молекулярный уровень. Элементарными единицами этого уровня организации жизни являются химические вещества; нуклеиновые кислоты, белки, углеводы, липиды и др. На этом уровне в основном проявляются такие важнейшие процессы жизнедеятельности, как передача наследственной информации, биосинтез, превращение энергии и др. Основная стратегия жизни на молекулярном уровне - способность создавать живое вещество и кодировать информацию, приобретенную в меняющихся условиях среды. 2.Клеточный уровень. На клеточном уровне организации структурными элементамивыступают различные органеллы. Способность к воспроизведению себе подобных, включение различных химических элементов Земли в состав клетки, регуляция химических реакций, запасание и потребление энергии - основные процессы этого уровня. Стратегия жизни на клеточном уровне - вовлечение химических элементов Земли и энергии Солнца в живые системы.
Билет №17. Закономерности наследования внеядерных генов. Цитоплазматическая наследственность.
Наличие некоторого количества наследственного материала в цитоплазме в виде кольцевых молекул ДНК митохондрий и пластид, а также других внеядерных генетических элементов дает основание специально остановиться на их участии в формировании фенотипа в процессе индивидуального развития. Цитоплазматические гены не подчиняются менделевским закономерностям наследования, которые определяются поведением хромосом при митозе, мейозе и оплодотворении. В связи с тем что организм, образуемый вследствие оплодотворения, получает цитоплазматические структуры главным образом с яйцеклеткой, цитоплазматическое наследование признаков осуществляется по материнской линии. Такой тип наследования был впервые описан в 1908 г. К. Корренсом в отношении признака пестрых листьев у некоторых растений .Как было установлено позднее, развитие этого признака обусловлено мутацией, возникающей в ДНК хлоропластов и нарушающей синтез хлорофилла в них. Размножение в клетках нормальных (зеленых) и мутантных (бесцветных) пластид и последующее случайное распределение их между дочерними клетками приводят к появлению отдельных клеток, совершенно лишенных нормальных пластид. Потомство этих клеток образует обесцвеченные участки на листьях. Фенотип потомства, таким образом, зависит от фенотипа материнского растения. У растения с зелеными листьями потомство абсолютно нормально. У растения с бесцветными листьями потомство имеет такой же фенотип. У материнского растения с пестрыми листьями потомки могут иметь все описанные фенотипы по данному признаку. При этом внешний вид потомства не зависит от признака отцовского растения.
Другим примером цитоплазматического наследования признаков могут служить некоторые патологические состояния, описанные у человека, причиной которых является первичный дефект митохондриальной ДНК (мтДНК)
Наряду с описанными выше типами и вариантами наследования ядерных и цитоплазматических генов в последнее время внимание ученых привлекает нетрадиционное наследование некоторых признаков и патологических состояний у человека
Билет №18. генетический код, его свойства
Генетическая информация, содержащаяся в ДНК и в иРНК, заключена в последовательности расположения нуклеотидов в молекулах. Каким же образом иРНК кодирует (шифрует) первичную структуру белков, т. е. порядок расположения аминокислот в них? Суть кода заключается в том, что последовательность расположения нуклеотидов в иРНК определяет последовательность расположения аминокислот в белках. Этот код называют генетическим, его расшифровка - одно из великих достижений науки. Носителем генетической информации является ДНК, но так как непосредственное участие в синтезе белка принимает иРНК - копия одной из нитей ДНК, то генетический код записан на «языке» РНК.
Код триплетен. В состав РНК входят 4 нуклеотида: А, Г, Ц, У. Если бы мы попытались обозначить одну аминокислоту одним нуклеотидом, то можно было бы зашифровать лишь 4 аминокислоты, тогда как их 20 и все они используются в синтезе белков. Двухбуквенный код позволил бы зашифровать 16 аминокислот (из 4 нуклеотидов можно составить 16 различных комбинаций, в каждой из которых имеется 2 нуклеотида).
В природе же существует трехбуквенный, или триплетный, код. Это означает, что каждая из 20 аминокислот зашифрована последовательностью 3 нуклеотидов, т. е. триплетом, который получил название кодон. Из 4 нуклеотидов можно создать 64 различные комбинации, по 3 нуклеотида в каждой (43=64). Этого с избытком хватает для кодирования 20 аминокислот и, казалось бы, 44 триплета являются лишними. Однако это не так. Почти каждая аминокислота шифруется более чем одним кодоном (от 2 до 6). Это видно из таблицы генетического кода.
Код однозначен. Каждый триплет шифрует только одну аминокислоту. У всех здоровых людей в гене, несущем информацию об одной из цепей гемоглобина, триплет ГАА или ГАГ, стоящий на шестом месте, кодирует глутаминовую кислоту. У больных серповидноклеточной анемией второй нуклеотид в этом триплете заменен на У. Как видно из таблицы генетического кода, триплеты ГУА или ГУГ, которые в этом случае образуются, кодируют аминокислоту валин.Между генами имеются знаки препинания. Каждый ген кодирует одну полипептидную цепочку. Поскольку в ряде случаев иРНК является копией нескольких генов, они должны быть отделены друг от друга. Поэтому в генетическом коде существуют три специальные триплета (УАА, УАГ, УГА), каждый из которых обозначает прекращение синтеза одной полипептидной цепи. Таким образом эти триплеты выполняют функцию знаков препинания. Они находятся в конце каждого гена.
Внутри гена нет знаков препинания. Поскольку генетический код подобен языку, разберем это его свойство на примере такой, составленной из триплетов, фразы:
жил был кот тих был сер мил мне тот кот
Смысл написанного понятен, несмотря на отсутствие знаков препинания. Если же мы уберем в первом слове одну букву (один нуклеотид в гене), но читать будем также тройками букв, то получится бессмыслица:
илб ылк отт ихб ылс ерм илм нет отк от
Бессмыслица возникает и при выпадении одного или двух нуклеотидов из гена. Белок, который считывается с такого «испорченного» гена, не будет иметь ничего общего с тем белком, который кодировался нормальным геном. Поэтому ген в цепи ДНК имеет строго фиксированное начало считывания.
Код универсален. Код един для всех живущих на Земле существ. У бактерий и грибов, злаков и мхов, муравья и лягушки, окуня и пеликана, черепахи, лошади и человека одни и те же триплеты кодируют одни и те же аминокислоты.
Трансляция (биология) — финальная стадия синтеза рибосомой белка из аминокислот на матрице информационной (или матричной) РНК.
Билет №19. Механизмы поддержания постоянства кариотипа в ряду поколений организмов.
У организмов, размножающихся бесполым путем, новое поколение появляется из неспециализированных в отношении генеративной функции клеток тела. В основе их самовоспроизведения лежит митоз, обеспечивающий таким образом сохранение постоянной структуры наследственного материала в ряду поколений не только клеток, но и организмов.
При половом размножении процесс воспроизведения организмов осуществляется с участием специализированных половых клеток — гамет, вступающих в оплодотворение. При оплодотворении наследственный материал двух родительских гамет сливается, образуя генотип организма нового поколения — зиготы. Чтобы потомки получили соответствующую программу для развития видовых и индивидуальных характеристик, они должны обладать кариотипом, которым располагало предыдущее поколение. В такой ситуации поддержание постоянства кариотипа в ряду поколений организмов достигается предварительным уменьшением вдвое набора хромосом в гаметах, который восстанавливается до диплоидного при их оплодотворении: п + п = 2n.
Образование гаплоидных гамет осуществляется в ходе гаметогенеза путем особой формы клеточного деления — мейоза. При мейозе из клеток с диплоидным набором In образуются гаметы с гаплоидным набором хромосом п (см. гл. 5). Такой результат достигается благодаря тому, что после однократного удвоения ДНК клетка делится дважды. В отличие от митоза в первом мейотическом делении в результате конъюгации гомологичные хромосомы объединяются в пары — биваленты. Последующее расхождение гомологов к разным полюсам веретена деления приводит к образованию клеток с гаплоидным набором хромосом: 2n4с → п2с. На рис. 3.70 представлены особенности первого деления мейоза в сравнении с митозом. В ходе второго мейотического деления сестринские хроматиды каждой хромосомы, как и в митозе, распределяются между дочерними клетками с наследственным материалом пс
Благодаря особенностям мейоза образуются клетки, несущие полноценный геном, в котором каждая группа сцепления представлена в единственном экземпляре (гаплоидный набор хромосом).
При самооплодотворении гаметы одного и того же родителя, а при перекрестном оплодотворении половые клетки разных организмов взаимодействуют друг с другом. Сперматозоиды, проникая в яйцеклетку, вводят в нее свой ядерный наследственный материал, заключенный в гаплоидном наборе хромосом. Ядра гамет сливаются и формируют диплоидное ядро зиготы, в котором каждая группа сцепления представлена в двойном экземпляре — отцовской и материнской хромосомами.
Таким образом, мейоз и последующее оплодотворение обеспечивают сохранение у нового поколения организмов диплоидного кариотипа, присущего всем особям данного вида.
Билет №20. Механизмы защиты генома от мутагенных воздействий.
Подавляющее большинство мутационных изменений генома нежелательно и сопровождается развитием различных патологических состояний мутантной особи или отдельной соматической клетки. Жестко действующий естественный отбор, в частности, через систему иммунного надзора элиминирует мутантные соматические клетки, опасные для существования многоклеточного организма, например, предотвращая иногда развитие онкологических или аутоиммунных заболеваний. Генетическая информация любого организма защищена от мутационных повреждений, что делает мутации в жизненно важных локусах генома очень редкими. Защита осуществляется на нескольких уровнях. Прежде всего, организм старается не допустить попадания химических мутагенов в жизненно важные локусы своего генома. Это достигается двумя путями. Во-первых, избыточные последовательности нуклеотидов ДНК, экранируя кодирующие последовательности нуклеотидов в геноме эукариот, принимают удар большей части химических мутагенов на себя. Те же цели могут быть достигнуты за счет особой пространственной организации ДНК в конкретных участках генома. Во-вторых, в клетках имеются многочисленные высоко- и низкомолекулярные ловушки мутагенов, важнейшими из которых являются: маннит, энкефалины, индолы, желчные кислоты и их производные, альфа-токоферол, аскорбиновая кислота, тирозин, серотонин, а также ряд других соединений экзогенного и эндогенного происхождения. К сожалению, обе системы защиты не обладают 100%-й эффективностью. То же можно сказать и о точности функционирования ферментных систем, осуществляющих воспроизведение генетической информации. Поэтому нарушения первичной структуры ДНК неизбежны, но большинство первичных повреждений не превращается в мутации благодаря функционированию систем репарации ДНК .
Билет №21 Виды взаимодействий между организмами.
1.Биотические связи.Среди огромного разнообразия взаимосвязей живых существ выделяют определенные типы отношений, имеющие много общего у организмов разных систематических групп.
1.Симбиоз.Симбиоз1 - сожительство (от.греч.сим - вместе, биос - жизнь) - форма взаимоотношения, из которых оба партнера или хотя бы один извлекают пользу.Мутуализм2 - форма симбиоза, при которой присутствие каждого из двух видов становится обязательным для обоих, каждый из сожителей получает относительно равную пользу, и партнеры (или один из них) не могут существовать друг без друга. Типичный пример мутуализма - отношения термитов и жгутиковых простейших, обитающих в их кишечнике. Термиты питаются древесиной, однако у них нет ферментов для переваривания целлюлозы. Жгутиконосцы вырабатывают такие ферменты и переводят клетчатку в сахара. Без простейших - симбионтов - термиты погибают от голода. Сами же жгутиконосцы помимо благоприятного микроклимата получают в кишечнике пищу и условия для размножения.Протокооперация3 - форма симбиоза, при которой совместное существование выгодно для обоих видов, но не обязательно для них. В этих случаях отсутствует связь именно этой, конкретной пары партнеров.Примером протокооперации являются взаимоотношения мелких рыбок семейства губановых и крупных хищных мурен. Крупные хищники, в том числе мурены, страдающие от паразитов, приплывают в места обитания губанов и дают им возможность уничтожать паразитов даже у себя во рту, хотя могли бы с легкостью их проглотить.Комменсализм - форма симбиоза, при которой один из сожительствующих видов получает какую-либо пользу, не принося другому виду ни вреда, ни пользы."Квартиранство"4 - форма комменсализма, при которой один вид использует другой (его тело или его жилище) в качестве убежища или своего жилья. Особую важность приобретает использование надежных убежищ для сохранения икры или молоди.Пресноводный горчак откладывает икру в мантийную полость двухстворчатых моллюсков - беззубок. Отложенные икринки развиваются в идеальных условиях снабжения чистой водой."Сотрапезничество"5 - форма комменсализма, при которой несколько видов потребляют разные вещества или части одного и того же ресурса."Нахлебничество"6 - форма комменсализма, при которой один вид потребляет остатки пищи другого.Примером перехода нахлебничества в более тесные отношения между видами служат взаимоотношения рыбы-прилипалы, обитающей в тропических и субтропических морях, с акулами и китообразными.
2.Нейтрализм.Нейтрализм7 - тип биотической связи, при которой совместно обитающие на одной территории организмы не влияют друг на друга. При нейтрализме особи разных видов не связаны друг с другом непосредственно.Например, белки и лось в одном лесу не контактируют друг с другом.
3.Антибиоз.Антибиоз - тип биотической связи, когда обе взаимодействующие популяции(или одна из них) испытывают отрицательное влияние друг друга.Аменсализм8 - форма антибиоза, при которой один из совместно обитающих видов угнетает другой, не получая от этого ни вреда, ни пользы. Пример: светолюбивые травы, растущие под елью, страдают от сильного затемнения, в то время как сами на дерево никак не влияют.Хищничество9 - тип антибиоза, при котором представители одного вида питаются представителями другого вида. Хищничество широко распространено в природе как среди животных, так и среди растений. Примеры: насекомоядные растения; лев, поедающий антилопу и т.д Кокуренция - тип биотических взаимоотношений, при котором организмы или виды соперничают друг с другом в потреблении одних и тех же обычно ограниченных ресурсов. Конкуренцию подразделяют на внутривидовую и межвидовую.Внутривидовая кокуренция10 - соперничество за одни и те же ресурсы, происходящее между особями одного и того же вида. Это важный фактор саморегулирования популяции. Примеры: птицы одного вида конкурируют из-за места гнездования. Самцы многих видов млекопитающих (например, оленей) в период размножения вступают друг с другом в борьбу за возможность обзавестись семьей.Межвидовая кокуренция11 - соперничество за одни и те же ресурсы, происходящее между особями разных видов. Примеры межвидовой кокуренции многочисленны. И волки, и лисы охотятся на зайцев. Поэтому между этими хищниками возникает конкуренция за пищу. Это не значит, что они непосредственно вступают в борьбу друг с другом, но успех одного означает неуспех другого.Паразитизм12 - форма антибиоза, когда представители одного вида используют питательные вещества или ткани особей другого вида, а также его самого в качестве временного или постоянного местообитания.. Все перечисленные формы биологических связей между видами служат регуляторами численности животных и растений в сообществе, определяя его устойчивость.
Билет №22. Биологические ритмы, их генетическая детерминированность. Проявление биоритмов на различных уровнях организации жизни.
Биологи́ческие ри́тмы — (биоритмы, Б.р.) периодически повторяющиеся изменения характера и интенсивности биологических процессов и явлений. Они свойственны живой материи на всех уровнях ее организации — от молекулярных и субклеточных до биосферы. Являются фундаментальным процессом в живой природе. Одни биологические ритмы относительно самостоятельны (например, частота сокращений сердца, дыхания), другие связаны с приспособлением организмов к геофизическим циклам - суточным (например, колебания интенсивности деления клеток, обмена веществ, двигательной активности животных), приливным (например, открывание и закрывание раковин у морских моллюсков, связанные с уровнем морских приливов), годичным (изменение численности и активности животных, роста и развития растений и др.)Наука изучающая роль фактора времени в осуществлении биологических явлений и в поведении живых систем, временнýю организацию биологических систем, природу, условия возникновения и значение Б. р. для организмов называется - биоритмология. Биоритмология является одним из направлений сформировавшегося в 60-е гг. раздела биологии — хронобиологии. На стыке биоритмологии и клинической медицины находится так называемая хрономедицина, изучающая взаимосвязи Б. р. с течением различных заболеваний, разрабатывающая схемы лечения и профилактики болезней с учетом Б. р. и исследующая другие медицинские аспекты Б. р. и их нарушений.Биоритмы подразделяются на физиологические и экологические. Физиологические ритмы, как правило, имеют периоды от долей секунды до нескольких минут. Это, например, ритмы давления, биения сердца и артериального давления. Экологические ритмы по длительности совпадают с каким-либо естественным ритмом окружающей среды.Б. р. описаны на всех уровнях, начиная от простейших биологических реакций в клетке и кончая сложными поведенческими реакциями. Таким образом, живой организм является совокупностью многочисленных ритмов с разными характеристиками. По последним научным данным в организме человека выявлено около 300 суточных ритмов.Адаптация организмов к окружающей среде в процессе эволюционного развития шла в направлении как совершенствования их структурной организации, так и согласования во времени и пространстве деятельности различных функциональных систем. Исключительная стабильность периодичности изменения освещенности, температуры, влажности, геомагнитного поля и других параметров окружающей среды, обусловленных движением Земли и Луны вокруг Солнца, позволила живым системам в процессе эволюции выработать стабильные и устойчивые к внешним воздействиям временные программы, проявлением которых служат Б. р. Такие ритмы, обозначаемые иногда как экологические, или адаптивные (например: суточные, приливные, лунные и годовые), закреплены в генетической структуре. В искусственных условиях, когда организм лишен информации о внешних природных изменениях (например, при непрерывном освещении или темноте, в помещении с поддерживаемыми на одном уровне влажностью, давлением и т.п.) периоды таких ритмов отклоняются от периодов соответствующих ритмов окружающей среды, проявляя тем самым свой собственный период.
Билет №23. Репликационный аппарат клетки
Способность к самокопированию (репликации) – одно из основных свойств живого
Репликон - единица репликации. Это - фрагмент ДНК от точки начала репликации до точки ее окончания.
ДНК-полимераза синтезирует ДНК только в одном направлении: от 5'- конца к 3'-концу, перемещаясь вдоль ДНК-матрицы в направлении 3'->5'.
Инициаторные белки присоединяются к специфическим последовательностям ДНК в точках начала репликации и способствуют образованию репликационной вилки
Точки начала репликации - специфические нуклеотидные последовательности размером около 300 нуклеотидов.
В начале репликации с помощью фермента геликазы двойная спираль ДНК расплетается в отдельных зонах
Репликационный глазок - небольшой участок, где цепи ДНК отделились друг от друга и были использованы в качестве матрицы.
Дестабилизирующие белки выпрямляют данный участок ДНК
ДНК-топоизомеразы устраняют проблему супервитков
ДНК-полимераза - основной фермент репликации - способна только добавлять новые нуклеотиды к уже имеющимся на 3' конце
Праймер — короткая нуклеотидная РНК-овая последовательность, комплементарно связанная с однонитевой ДНК; с его 3′-конца ДНК-полимераза начинает наращивать цепь.
РНК-праймаза синтезирует праймеры (РНК-затравки)
У эукариот праймеры состоят приблизительно из 10 нуклеотидов
ДНК-лигаза удаляет РНК-затравку и сшивает фрагменты Оказаки в единую цепь. База соответствует одной паре нуклеотидов
Билет №24. Роль ядра в явлениях наследственности и изменчивости
Ядро— это один из структурных компонентов эукариотической клетки, содержащий генетическую информацию (молекулы ДНК). В ядре происходит репликация — удвоение молекул ДНК, а также транскрипция — синтез молекул РНК на молекуле ДНК. Образование субъединиц рибосом также происходит в ядре в специальных образованиях - ядрышках. Хроматином называют молекулы хромосомной ДНК в комплексе со специфическими белками, необходимыми для осуществления этих процессов. Основную массу составляют «белки хранения», так называемые гистоны. Если хроматин упакован плотно, его называют гетерохроматином, он хорошо видим под микроскопом. Если хроматин упакован неплотно, его называют эухроматин. Этот вид хроматина гораздо менее плотный при наблюдении под микроскопом и обычно характеризуется наличием транскрипционной активности. От цитоплазмы ядро отделено ядерной оболочкой. Внутренняя поверхность ядерной оболочки подстилается ядерной ламиной, жёсткой белковой структурой, к которой прикреплены нити хромосомной ДНК. Ламины прикрепляются к внутренней мембране ядерной оболочки при помощи заякоренных в ней трансмембранных белков — рецепторов ламинов. В некоторых местах внутренняя и внешняя мембраны ядерной оболочки сливаются и образуют так называемые ядерные поры, через которые происходит материальный обмен между ядром и цитоплазмой. Ядрышко - сферическое образование (1-5 мкм в диаметре) хорошо воспринимающее основные красители и располагающееся среди хроматина. В одном ядре может содержаться от 1 до 4-х и даже более ядрышек. Оно формируется только в интерфазе в определенных участках некоторых хромосом - ядрышковых организаторах, в которых содержатся гены, кодирующие молекулу рибосомальной РНК. В области ядрышкового анализатора осуществляется транскрипция с ДНК рибосомальной РНК. В ядрышке происходит соединение рибосомальной РНК с белком и образование субъединиц рибосом. Кариоплазма (нуклеоплазма) или ядерный сок состоит из воды, белков и белковых комплексов (нуклеопротеидов, гликопротеидов), аминокислот, нуклеотидов, сахаров. Белки кариоплазмы являются в основном белками-ферментами, в том числе ферментами гликолиза, осуществляющих расщепление углеводов и образование АТФ. При участии кариоплазмы осуществляется обмен веществ в ядре, взаимодействие ядра и цитоплазмы.
Билет №25. Онтогенез его периодизация. Общая характеристика эмбрионального периода. Роль наследственности и среды в онтогенезе. Критические периоды эмбрионального развития.
Онтогене́з (от греч. οντογένεση: ον — существо и γένεση — происхождение, рождение) — индивидуальное развитие организма от оплодотворения (при половом размножении) или от момента отделения от материнской особи (при бесполом размножении) до смерти.У многоклеточных животных в составе онтогенеза принято различать фазы эмбрионального (под покровом яйцевых оболочек) и постэмбрионального (за пределами яйца) развития, а у живородящих животных пренатальный (до рождения) и постнатальный (после рождения) онтогенез.У семенных растений к эмбриональному развитию относят процессы развития зародыша, происходящие в семени.Термин «онтогенез» впервые был введен Э. Геккелем в 1866 году. В ходе онтогенеза происходит процесс реализации генетической информации, полученной от родителей.
Онтогенез делится на два периода:
эмбриональный — от образования зиготы до рождения или выхода из яйцевых оболочек;
постэмбриональный — от выхода из яйцевых оболочек или рождения до смерти организма.
В эмбриональном периоде выделяют три основных этапа: дробление, гаструляцию и первичный органогенез. Эмбриональный, или зародышевый, период онтогенеза начинается с момента оплодотворения и продолжается до выхода зародыша из яйцевых оболочек. У большинства позвоночных он включает стадии (фазы) дробления, гаструляции, гисто- и органогенеза.
Дробление — ряд последовательных митотических делений оплодотворенного или инициированного к развитию яйца. Дробление представляет собой первый период эмбрионального развития, который присутствует в онтогенезе всех многоклеточных животных и приводит к образованию зародыша, называемого бластулой (зародыш однослойный). При этом масса зародыша и его объем не меняются, то есть они остаются такими же, как у зиготы, а яйцо разделяется на все более мелкие клетки — бластомеры. После каждого деления дробления клетки зародыша становятся все более мелкими, то-есть меняются ядерно-плазменные отношения: ядро остается таким же, а объем цитоплазмы уменьшается. Процесс протекает до тех пор, пока эти показатели не достигнут значений, характерных для соматических клеток. Тип дробления зависит от количества желтка и его расположения в яйце. Если желтка мало и он равномерно распределен в цитоплазме (изолецитальные яйца: иглокожие, плоские черви, млекопитающие), то дробление протекает по типу полного равномерного: бластомеры одинаковы по размерам, дробится все яйцо. Если желток распределен неравномерно (телолецитальные яйца: амфибии), то дробление протекает по типу полного неравномерного: бластомеры — разной величины, те, которые содержат желток — крупнее, яйцо дробится целиком. При неполном дроблении желтка в яйцах настолько много, что борозды дробления не могут разделить его целиком. Дробление яйца, у которого дробится только сконцентрированная на анимальном полюсе «шапочка» цитоплазмы, где находится ядро зиготы, называется неполным дискоидальным (телолецитальные яйца: пресмыкающиеся, птицы). При неполном поверхностном дроблении в глубине желтка происходят первые синхронные ядерные деления, не сопровождающиеся образованием межклеточных границ. Ядра, окруженные небольшим количеством цитоплазмы, равномерно распределяются в желтке. Когда их становится достаточно много, они мигрируют в цитоплазму, где затем после образования межклеточных границ возникает бластодерма (центролецитальные яйца: насекомые).
Гаструляция (впячивание) — гаструла формируется в результате инвагинации клеток. В ходе гаструляции клетки зародыша практически не делятся и не растут. Происходит активное передвижение клеточных масс (морфогенетические движения). В результате гаструляции формируются зародышевые листки (пласты клеток). Гаструляция приводит к образованию зародыша, называемого гаструлой.
Первичный органогенез — процесс образования комплекса осевых органов. В разных группах животных этот процесс характеризуется своими особенностями. Например, у хордовых на этом этапе происходит закладка нервной трубки, хорды и кишечной трубки.В ходе дальнейшего развития формирование зародыша осуществляется за счет процессов роста, дифференцировки и морфогенеза. Рост обеспечивает накопление клеточной массы зародыша. В ходе процесса дифференцировки возникают различно специализированные клетки, формирующие различные ткани и органы. Процесс морфогенеза обеспечивает приобретение зародышем специфической формы
Постэмбриональное развитие бывает прямым и непрямым.
Прямое развитие — развитие, при котором появившийся организм идентичен по строению взрослому организму, но имеет меньшие размеры и не обладает половой зрелостью. Дальнейшее развитие связано с увеличением размеров и приобретением половой зрелости. Например: развитие рептилий, птиц, млекопитающих.
Непрямое развитие (личиночное развитие, развитие с метаморфозом) — появившийся организм отличается по строению от взрослого организма, обычно устроен проще, может иметь специфические органы, такой зародыш называется личинкой. Личинка питается, растет и со временем личиночные органы заменяются органами, свойственными взрослому организму (имаго). Например: развитие лягушки, некоторых насекомых, различных червей.Постэмбриональное развитие сопровождается ростом.
Билет №26. Биосоциальная природа человека как отражение эволюционно обусловленной иерархии живой природы. Значение биологического наследия человека в современных условиях жизни.
На планете среди других существ людям принадлежит уникальное место, что обусловлено приобретением ими в процессе антропогенеза особого качества — социальной сущности. Это означает, что уже не биологические механизмы, а в первую очередь общественное устройство, интеллект, производство, труд обеспечивают выживание, всесветное и даже космическое расселение, благополучие человечества. Социальность, однако, не противопоставляет людей остальной живой природе. Человек остается включенным в систему органического мира. Этот мир складывался и развивался на протяжении большей части истории планеты независимо от человеческого фактора, более того, на определенном этапе своего развития он этот фактор породил. Человечество составляет своеобразный, но неотъемлемый компонент биосферы. Крупный отечественный патолог И. В. Давыдовский писал, что естественность и законность болезней вытекают из основных свойств жизни, а именно из универсального и важнейшего свойства организмов — приспосабливаться к меняющимся условиям внешней среды. По его мнению, полнота такого приспособления и есть полнота здоровья.
Билет №27 Гаметогенез или предзародышевое развитие — процесс созревания половых клеток, или гамет. Поскольку в ходе гаметогенеза специализация яйцеклеток и спермиев происходит в разных направлениях, обычно выделяют овогенез и сперматогенез соответственно. Гаметогенез закономерно присутствует в жизненном цикле ряда простейших, водорослей, грибов, споровых и голосемянных растений, а также многоклеточных животных. В некоторых группах гаметы вторично редуцированы (сумчатые и базидиевые грибы, цветковые растения). Наиболее подробно процессы гаметогенеза изучены у многоклеточных животных.
Гаметогенез
(от гаметы и греч. genesis — происхождение), процесс развития и формирования половых клеток — гамет. Г. мужских гамет (сперматозоидов, спермиев) называют сперматогенезом, женских гамет (яйцеклеток) — оогенезом. У животных и растений Г. протекает различно, в зависимости от места мейоза в жизненном цикле этих организмов.
У многоклеточных животных Г. происходит в специальных органах — половых железах, или гонадах (яичниках, семенниках, гермафродитных половых железах), и складывается из трёх основных этапов: 1) размножение первичных половых клеток — гаметогониев (сперматогониев и оогониев) путём ряда последовательных митозов, 2) рост и созревание этих клеток, называют теперь гаметоцитами (сперматоцитами и ооцитами), которые, как и гаметогонии, обладают полным (большей частью диплоидным) набором хромосом. В это время совершается основное событие Г. у животных — деление гаметоцитов путём мейоза, приводящее к редукции (уменьшению вдвое) числа хромосом в этих клетках и превращению их в гаплоидные клетки (см. Гаплоид) — сперматиды и оотиды; 3) формирование сперматозоидов (либо спермиев) и яйцеклеток; при этом яйцеклетки одеваются рядом зародышевых оболочек, а сперматозоиды приобретают жгутики, обеспечивающие их подвижность. У самок многих видов животных мейоз и формирование яйца завершаются после проникновения сперматозоида в цитоплазму ооцита, но до слияния ядер сперматозоида и яйцеклетки.
У растений Г. отделен от мейоза и начинается в гаплоидных клетках — в спорах (у высших растений — микроспоры и мегаспоры). Из спор развивается половое поколение растения — гаплоидный гаметофит, в половых органах которого — гаметангиях (мужских — антеридиях, женских — архегониях) путём митозов происходит Г. Исключение составляют голосеменные и покрытосеменные растения, у которых сперматогенез идёт непосредственно в прорастающей микроспоре — пыльцевой клетке. У всех низших и высших споровых растений Г. в антеридиях — это многократное деление клеток, в результате которого образуется большое число мелких подвижных сперматозоидов. Г. в архегониях — формирование одной, двух или нескольких яйцеклеток. У голосеменных и покрытосеменных растений мужской Г. состоит из деления (путём митоза) ядра пыльцевой клетки на генеративное и вегетативное и дальнейшего деления (также путём митоза) генеративного ядра на два спермия. Это деление происходит в прорастающей пыльцевой трубке. Женский Г. у покрытосеменных растений — обособление путём митоза одной яйцеклетки внутри 8-ядерного зародышевого мешка. Основное различие Г. у животных и растений: у животных он совмещает в себе превращение клеток из диплоидных в гаплоидные и формирование гаплоидных гамет; у растений Г. сводится к формированию гамет из гаплоидных клеток.
Гаметы (от греч. ?????? — жена, ??????? — муж) — репродуктивные клетки, имеющие гаплоидный (одинарный) набор хромосом и участвующие в гаметном, в частности, половом размножении. При слиянии двух гамет в половом процессе образуется зигота, развивающаяся в особь (или группу особей) с наследственными признаками обоих родительских организмов, продуцировавших гаметы.
У некоторых видов возможно и развитие в организм одиночной гаметы (неоплодотворённой яйцеклетки) — партеногенез.
Морфология гамет и типы гаметогамии
Морфология гамет различных видов достаточно разнообразна, при этом продуцируемые гаметы могут отличаться как по хромосомному набору (при гетерогаметности вида), величине и подвижности (способности к самостоятельному передвижению), при этом гаметный диморфизм у различных видов варьирует в широких пределах — от отсутствия диморфизма в виде изогамии до своего крайнего проявления в форме оогамии.
Изогамия
Если сливающиеся гаметы морфологически не отличаются друг от друга величиной, строением и хромосомным набором, то их называют изогаметами, или бесполыми гаметами. Такие гаметы подвижны, могут нести жгутики или быть амёбовидными. Изогамия типична для многих водорослей.
Анизогамия (гетерогамия)
Гаметы, способные к слиянию, различаются по размерам, подвижные микрогаметы несут жгутики, макрогаметы могут быть как подвижны (многие водоросли), так и неподвижны (лишённые жгутиков макрогаметы многих протистов).
Оогамия
Способные к слиянию гаметы одного биологического вида резко различаются по размерам и подвижности на два типа: малые подвижные мужские гаметы — сперматозоиды — и крупные неподвижные женские гаметы — яйцеклетки. Различие размера гамет обусловлено тем, что яйцеклетки содержат запас питательных веществ, достаточный для обеспечения нескольких первых делений зиготы при её развитии в зародыш.
Мужские гаметы — сперматозоиды — животных и многих растений подвижны и обычно несут один или несколько жгутиков, исключением являются лишённные жгутиков мужские гаметы семенных растений — спермии, которые доставляются к яйцеклетке при прорастании пыльцевой трубки, а также безжгутиковые сперматозоиды (спермии) нематод и членистоногих.
Хотя сперматозоиды несут митохондрии, при оогамии от мужской гаметы к зиготе переходит только ядерная ДНК, митохондриальная ДНК (а в случае растений и пластидная ДНК) обычно наследуется зиготой только от яйцеклетки.
Билет №28. Нетрадиционное наследование (геномный импринтинг, однородительская дисомия, экспансия тринуклеотидных повторов, митохондриальное наследование).
ЭКСПАНСИЯ ТРИНУКЛЕОТИДНЫХ ФРАГМЕНТОВ - патологическое состояние: вариант генетической мутации, характеризующийся появлением в ДНК "бессмысленных" повторов тринуклеотидов, которые могут приводить к дезорганизации функционирования ДНК или синтезу патологического белка, накапливающегося в клетках, что приводит к гибели клетки. Лежит в основе ряда заболеваний (болезни Гентингтона, болезни Кеннеди, спиноцеребеллярных дегенерации и т.д.), тяжесть которых зависит от числа повторов тринуклеотидов. Общая особенность этой группы заболеваний - более раннее начало и нарастание тяжести их клинических проявлений из поколения в поколение, что обычно отражает увеличение числа тринуклеотидных повторов (феномен антиципации).В последнее время выделяется еще один тип наследования - митохондриальный. Митохондрии передаются с цитоплазмой яйцеклеток. Спермии не имеют митохондрий, поскольку цитоплазма элиминируется в процессе созревания мужских половых клеток. В яйцеклетке содержится около 25000 митохондрий. Каждая митохондрия содержит кольцевую хромосому. Генные мутации в митохондриальной ДНК обнаружены при атрофии зрительного нерва Лебераф, митохондриальных миопатиях, прогрессирующих офтальмоплегиях. Болезни, обусловленные данным типом наследственности, передаются от матери и дочерям, и сыновьям в равной степени. Больные отцы болезнь не передают ни дочерям, ни сыновьям.
Геномный импринтинг — эпигенетический процесс, при котором экспрессия определенных генов осуществляется в зависимости оттого, от какого родителя поступил аллель гена. Это ненаследуемый процесс, который не подчиняется наследованию по Менделю. Импринтинг генов вызывает экспрессию аллелей гена полученных от матери в случае генов H19 или CDKN1C и от отца в случае гена IGF2. Импринтинг некоторых генов в составе генома показан для насекомых, млекопитающих и цветковых растений.
Импринтинг генов осуществляется с помощью процесса метилирования ДНК. Если по каким-то причинам импринтинг не сработает, это может привести к появлению генетических нарушений (например Синдром Прадера-Вилли).[13]
Однородительская дисомия, то есть наследование обеих копий целой хромосомы или ее части от одного родителя (при отсутствии соответствующего генетического материала от другого родителя), является исключением из менделевских принципов наследования. Она встречается редко и вызывает, например, синдром Прадера-Вилли и синдром Ангельмана .
Роль дисомии в патологии во многом усугубляется геномным импринтингом , который приводит к неодинаковой экспрессии материнской и отцовской копий гена.
Возможный механизм дисомии - элиминация лишней хромосомы у плода с трисомией на ранних стадиях эмбриогенеза. Болезнь проявляется в том случае, если элиминируется лишняя хромосома, происходящая из нормальной гаметы.
Однородительская дисомия была описана при муковисцидозе , когда оба мутантных аллеля наследовались от одного родителя. В таких случаях дисомия имитирует аутосомно-рецессивное наследование.
У 20-30% больных с синдромом Прадера-Вилли , имеющих по данным цитогенетического исследования нормальный кариотип, с помощью молекулярно-биологических методов обнаруживается дисомия материнской 15-й хромосомы . Отцовская 15-я хромосома у таких больных отсутствует.
Предполагают, что однородительская дисомия является причиной внутриутробной задержки развития , умственной отсталости и микроцефалии . Эти предположения пока не подтверждены молекулярно-биологическими исследованиями.
Билет №29 СМ. №2
Билет №30
Феноти?п — (от греческого слова phainotip — являю, обнаруживаю) совокупность характеристик, присущих индивиду на определённой стадии развития. Фенотип формируется на основе генотипа, опосредованного рядом внешнесредовых факторов. У диплоидных организмов в фенотипе проявляются доминантные гены.
Фенотип — совокупность внешних и внутренних признаков организма, приобретённых в результате онтогенеза (индивидуальное развитие)
Несмотря на кажущееся строгое определение, концепция фенотипа имеет некоторые неопределенности. Во-первых, большинство молекул и структур кодируемых генетическим материалом, не заметны во внешнем виде организма, хотя являются частью фенотипа. Например, именно так обстоит дело с группами крови человека. Поэтому расширенное определение фенотипа должно включать характеристики, которые могут быть обнаружены техническими, медицинскими или диагностическими процедурами. Дальнейшее, более радикальное расширение может включать приобретенное поведение или даже влияние организма на окружающую среду и другие организмы. Например, согласно Ричарду Докинзу, плотину бобров также как и их резцы можно считать фенотипом генов бобра.[1]
Фенотип можно определить как «вынос» генетической информации навстречу факторам среды. В первом приближении можно говорить о двух характеристиках фенотипа: а) число направлений выноса характеризует число факторов среды, к которым чувствителен фенотип, — мерность фенотипа; б) «дальность» выноса характеризует степень чувствительности фенотипа к данному фактору среды. В совокупности эти характеристики определяют богатство и развитость фенотипа. Чем многомернее фенотип и чем он чувствительнее, чем дальше фенотип от генотипа, тем он богаче. Если сравнить вирус, бактерию, аскариду, лягушку и человека, то богатство фенотипа в этом ряду растет.
Геном — вся совокупность наследственного материала, заключенного в гаплоидном наборе хромосом клеток данного вида организмов. Он обеспечивает формирование видовых характеристик организмов в ходе их онтогенеза. Генотип — совокупность генов, образованная при половом размножении в процессе оплодотворения при объединении геномов двух родительских клеток, генетическая конституция организма, представляющая собой совокупность всех наследственных задатков его клеток, заключенных в их хромосомном наборе — кариотипе. Фенотип — видовые и индивидуальные морфологические, физиологические и биохимические свойства на всем протяжении индивидуального развития. Ведущая роль в формировании фенотипа — наследственная информация, заключенная в генотипе. Наряду с этим результат наследственной программы (в генотипе) зависит от условий, в которых осуществляется этот процесс. В случае гетерозиготности развитие данного признака будет зависеть от взаимодействия аллельных генов. Доминирование — это такое взаимодействие аллельных генов, при котором проявление одного из аллелей (А) не зависит от присутствия в генотипе другого (А’). Этот аллель доминантный, второй рецессивный (пример: группа крови). Неполное доминирование — фенотип гетерозигот ВВ’ отличается от фенотипа гомозигот по обеим аллелям (ВВ, В’В’) промежуточным проявлением признака. Это происходит, т.к. аллель, способная сформировать нормальный признак находится у гетерозигот в двойной дозе ВВ, а у гомозигот ВВ’. Генотипы отличаются экспрессивностью (степень выраженности признака). Пример: заболевания у человека, проявляющиеся клинически у гетерозигот, а у гомозигот заканчивающиеся смертью. Кодоминирование — каждый из аллелей проявляет свое действие, в результате — промежуточный вариант признака (Группа крови, аллели которые по отдельности формируют 2 и 3 группы крови, вместе образуют 4). Аллельное исключение — вид взаимодействия аллельных генов в генотипе. Например, инактивация одного из аллелей в сосотаве Х-хромосомы способствует тому, что разных клетках организма, мозаичных по функционирующей хромосоме, фенотипически проявляются разные аллели.
Билет №31. Генетический гомеостаз и механизмы его обеспечения на разных уровнях организации жизни.
ГОМЕОСТАЗ генетический — способность популяции поддерживать динамическое равновесие генетического состава, что обеспечивает ее жизнеспособность.Гомеостатические системы обладают следующими свойствами:
Нестабильность системы: тестирует, каким образом ей лучше приспособиться.Стремление к равновесию: вся внутренняя, структурная и функциональная организация систем способствует сохранению баланса.Непредсказуемость: результирующий эффект от определённого действия зачастую может отличаться от того, который ожидался.
Механизмы гомеостаза: обратная связь.Когда происходит изменение в переменных, наблюдаются два основных типа обратной связи, или фидбэка, на которые реагирует система:Отрицательная обратная связь, выражающаяся в реакции, при которой система отвечает так, чтобы изменить направление изменения на противоположное. Так как обратная связь служит сохранению постоянства системы, это позволяет соблюдать гомеостаз. Например, когда концентрацияуглекислого газав организме человека увеличивается, лёгким приходит сигнал к увеличению их активности и выдыханию большего количество углекислого газа.Терморегуляция— другой пример отрицательной обратной связи. Когда температура тела повышается (или понижается)терморецепторывкожеигипоталамусерегистрируют изменение, вызывая сигнал из мозга. Данный сигнал, в свою очередь, вызывает ответ — понижение температуры (или повышение).Положительная обратная связь, которая выражается в усилении изменения переменной. Она оказывает дестабилизирующий эффект, поэтому не приводит к гомеостазу. Положительная обратная связь реже встречается в естественных системах, но также имеет своё применение. Например, в нервахпороговый электрический потенциалвызывает генерацию намного большегопотенциала действия.Свёртываниекровии события прирожденииможно привести в качестве других примеров положительной обратной связи.Устойчивым системам необходимы комбинации из обоих типов обратной связи. Тогда как отрицательная обратная связь позволяет вернуться к гомеостатическому состоянию, положительная обратная связь используется для перехода к совершенно новому (и, вполне может быть, менее желанному) состоянию гомеостаза, — такая ситуация называется «метастабильность». Такие катастрофические изменения могут происходить, например, с увеличениемпитательных веществв реках с прозрачной водой, что приводит к гомеостатическому состоянию высокойэвтрофикации(зарастание руславодорослями) и замутнению.
Билет №32 Половой процесс и эволюция его форм.характеристики гамет. Препарат-зигота. Задача на гемофилию
Билет №33 Транскрипция.Процессинг и сплайсинг.Альтернативный сплайсинг
Билет №34, 47. Биологические ритмы и факторы внешней среды. Хронобиология и хрономедицина, понятие о десинхронозах.
Хронобиология (от «Chrono», «Chronos» — «время») — область науки, которая исследует периодические (циклические) феномены, протекающие у живых организмов во времени, и их адаптацию к солнечным и лунным ритмам[1]. Эти циклы именуют биологические ритмы (БР).Хронобиологические исследования включают, но не ограничиваются ими, работы в области сравнительной анатомии, физиологии, генетики, молекулярной биологии и биологии поведения организмов[1]. Другие аспекты включают исследование развития, воспроизведения, экологии и эволюции видов.