
- •1. Белки крови, их количественное содержание и выполняемая функция. Причины изменения содержания белков в плазме крови. Причины появления белков в моче.
- •2. Гемоглобин, его содержание в крови, биологическая роль. Причины изменения содержания в крови. Гипоксия, их причины. Гемоглобинурия.
- •4. Ацетоновые тела, их происхождение и биологическая роль, содержание в крови. Ацетонемия и кетонурия. Причины их возникновения.
- •5. Мочевина. Значение ее образования в организме. Содержание мочевины в крови и суточное выделение с мочой. Причины изменения суточного количества мочевины в моче.
- •6. Креатин и креатинин, их содержание в крови. Биологическая роль креатина. Суточное выведение креатинина с мочой. Причины появления креатина в моче.
- •7. Аммиак. Пути его образования и обезвреживания в организме. Суточное количество аммиака в моче. Причины изменения содержания аммиака в моче.
- •8. Остаточный азот крови. Его количественное содержание. Общий азот мочи. Причины изменения содержания остаточного азота в крови и общего азота в моче.
- •9. Желчные пигменты, их происхождение. Содержание билирубина в крови. Причины изменения содержания билирубина в крови и его появление в моче. Уробилин, причины изменения его содержания в моче.
- •10 Минеральные компоненты крови: Cl, Са, р, Na, их биологическая роль, содержание в крови. Причины изменения содержания.
- •11. Ферменты крови. Причины изменения активности ферментов в крови. Энзимодиагностика.
- •12 Липиды крови: состав, содержание в крови. Липопротеиды крови. Изменение содержания липидов крови при патологии.
2. Гемоглобин, его содержание в крови, биологическая роль. Причины изменения содержания в крови. Гипоксия, их причины. Гемоглобинурия.
Содержание в крови:
Мужчины 135-180гр/л
Женщины 120-160гр/л
Биологическая роль
Гемоглобин это идеальный дыхательный белок, который обеспечивает
транспорт кислорода к тканям,
транспорт углекислого газа и
гемоглобиновый буфер (основная буферная емкость).
Изменение числа эритроцитов.
Повышение числа Э и их массы (гематокрит) в целом указывает на эритроцитоз, который может быть первичным (поражение эритропоэза, заболевания ситемы крови) или вторичным. Вторичный эритроцитоз чаще всего развивается вследствие кислородного голодания тканей и наблюдается при легочных заболеваниях, врожденных пороках сердца, при гиповентиляции, пребывании на высоте, накоплении карбоксигемоглобина при курении, молекулярных изменениях гемоглобина, нарушении выработки эритропоэтина вследствие образования опухоли или кисты. Относительное повышение Э определяется при гемоконцентрации, например, при ожогах, диарее, приеме диуретиков и т. д.
Понижение НЬ и Э является прямым непосредственным указанием на анемию (малокровие). Острая кровопотеря до одного литра принципиально не влияет на морфологию Э. Если в отсутствие кровопотери число Э снижается, то, естественно, следует предположить нарушение эффективности эритропоэза. Эффективный (действительный) эритропоэз может быть оценен с помощью следующих тестов: определения уровня утилизации железа Э, определения количества ретикулоцитов и скорости их созревания, измерения продолжительности жизни эритроцитов и других функциональных характеристик, определяющих их полноценность.
Строение и синтез.
Гемоглобин это гемопротеид. Это неферментный белок имеющий интересную структуру. В его состав входит 4 полипептидные цепи. Есть несколько видов гемоглобина: гемоглобин А есть и фетальный гемоглобин в состав которого входят несколько иные цепи.
Фетальный гемоглобин есть у любого человека, другое дело, что у плода это основной гемоглобин.
Обычный гемоглобин взрослых содержит 2 парные и 2 парные цепи каждая полипептидная цепь соединяется с гемом. 4 цепи - 4 гема.
Миоглобин похожий по структуре белок - мышечный белок, который в отличии от гемоглобина состоит из 1 полипептидной цепи и 1-го гема. Имеет значимость в доставке кислорода внутри клетки до митохондрий.
В процессе присоединения кислорода происходит конформационные изменения субъединиц - положительная кооперативность. Эти конформационные изменения имеют огромную значимость в процессе связывания кислорода в легких и в процессах его отдачи.
Гем: Это очень устойчивая структура, практически это самая длинная замкнутая сопряженная система, которая образует порфириновое ядро состоящее из 4 пиррольных колец соединенных метинильными мостиками. Кроме того здесь имеются боковые цепи. Цитохромы отличаются от гема составом боковых цепей, но порфириновое ядро у них такое же.
Железо связано с пиррольными ядрами, и за счет координационных связей оно связано еще и с азотом имидозольных ядер гистидина полипептидных цепей. Обеспечивается связывание кислорода и образование оксигемоглобина. Соединение в котором железо 3 валентно - метгемоглобин, образуется при действии сильных окислителей (лаки, анилиновые окраски). В крови всегда присутствует метгемоглобин не выше 2%. Метгемоглобин - производное гемоглобина не способен транспортировать кислород.
Восстановление гемоглобина происходит за счет фермента -метгемоглобинредуктазы. У детей этот фермент крайне неактивен.
В боковой цепи содержится 4 метильные группы, 2 винильных и 2 остатка пропионовой кислоты.
Распад гемоглобина происходит достаточно быстро. За сутки синтезируется 6 грамм. Валовый синтез гемоглобина достаточно высок. Гемоглобин в ходе функционирования эритроцита может превращаться в метгемоглобин, могут происходить различные процессы диструктирующие липидный бислой мембран, поскольку перикисное окисление мембран эритроцитов происходит.
Синтез глобина идет на рибосомах, а синтез гема идет из соединений заменимых:
во-первых для синтеза нужна заменимая аминокислота глицин, может образовываться
из липидов, из продуктов распада углеводов, из других аминокислот и тд.
во-вторых сукцинилКоА, образуется в циклу Кребса, в него превращаются углеродные
скелеты нескольких аминокислот.
Через аминоорнитиновую кислоту образуется так называемая эпсилонаминолевулиновая кислота, далее идет реакция дегидротации и циклизация с образованием порфобилиногена1.
Порфириновое ядро вместе с боковыми цепями носит название протопорфирин9. Происходящие дальше процессы приводят к образованию этого соединения. Потом железо присоединяется с образованием гемоглобина. Синтез требует затрат энергии и на любом из этапов этот синтез может нарушаться.
Что вам здесь нужно знать? Гем синтезируется, требует затрат энергии, синтез идет из простых достаточно соединений.
Гипоксии.
Гипоксия (кислородное голодание) — состояние, возникающее при недостаточном снабжении тканей организма кислородом или нарушении его утилизации в процессе биологического-окисления.
1. Гипоксия вследствие понижения РО2, во вдыхаемом воздухе (экзогенная гипоксия).
2. Гипоксия при патологических процессах, нарушающих снабжение тканей кислородом при нормальном содержании его в окружающей среде. Сюда относятся следующие типы: а) дыхательный (легочный); б) сердечно-сосудистый (циркулятор-ный); в) кровяной (гемический); г) тканевый (гистотоксический): д) смешанный.
Гипоксия вследствие понижения парциального давления кислорода во вдыхаемом воздухе. Этот вид гипоксии возникает главным образом при подъеме на высоту. Может наблюдаться и в тех случаях, когда общее барометрическое давление нормально, но РО2, понижено, например при авариях в шахтах, неполадках в системе кислородообеспечения кабины летательного аппарата, в подводных лодках и т.п., а также во время операций при неисправности наркозной аппаратуры,
При экзогенной гипоксии развивается гипоксеми я, т.е. уменьшается парциальное давление кислорода в артериальной крови и снижается насыщение гемоглобина кислородом.
Гипоксия при патологических процессах, нарушающих снабжение или утилизацию кислорода тканями.
Дыхательный (легочный) тип гипоксии возникает в связи с альвеолярной гиповентиляцией, что может быть обусловлено нарушением проходимости дыхательных путей (воспалительный процесс, инородные тела, спазм), уменьшением дыхательной поверхности легких (отек легкого, пневмония и т. д.).Обычно нарушается также выведение из организма углекислого газа.
Сердечно-сосудистый (циркуляторный) тип гипоксии наблюдается при нарушениях кровообращения, приводящих к недостаточному кровоснабжению органов и тканей. Для газового состава крови в типичных случаях циркуляторной гипоксии характерны нормальные напряжение и содержание кислорода в артериальной крови, снижение этих показателей в венозной крови и высокая артерио-венозная разница по кислороду.
Кровяной (гемический) тип гипоксии возникает в результате уменьшения кислородной емкости крови при анемиях, обусловленных значительным уменьшением эритроцитной массы или резким понижением содержания гемоглобина в эритроцитах. В этих случаях Ро, в венозной крови резко снижено.
Гемическая гипоксия наблюдается также при отравлении оксидом углерода (образование карбоксигемоглобина) и метгемоглобинообразователями (метгемогло-бинемия), а также при некоторых генетически обусловленных аномалиях гемогло-
бина.
Тканевый (гистотоксический) тип гипоксии обычно обусловлен нарушением способности тканей поглощать кислород из крови. Утилизация кислорода тканями может затрудняются в результате угнетения биологического окисления различными ингибиторами, нарушения синтеза ферментов или повреждения мембранных структур клетки. Типичным примером тканевой гипоксии может служить отравление цианидами.
Гемоглобинурия
Гемоглобинурии — обусловлены внутрисосудистым гемолизом эритроцитов.
Первичные — это холодовая, маршевая пароксизмальная.
Вторичные — это переливание несовместимой крови, отравление сульфаниламидами, анилиновыми красками, грибами и т. д.
Гемоглобинурия - обнаружение в моче крови в виде растворенного кровяного пигмента
Гематурия - обнаружение в моче крови в форме красных кровяных клеток.
Почечная гематурия - основной симптом почечного нефрита
Внепочечная гематурия - при воспалительных процессах или травмах мочевых путей.
Глюкоза крови. Содержание глюкозы в крови, регуляция содержания глюкозы в крови. Причины изменения уровня глюкозы в крови и появление ее в моче.
Содержание
Глюкоза - 3,3-5,5 мМ/л
кишечник распад гликогена перевращение др. моносах. глюконеогинез
ГЛЮКОЗА
окисление окисление окисление пентозный
до лактата до СО2 и Н2О до глюкурон. путь окисл.
анаэроб. аэроб. усл. кислот
синтез синтез синтез синтез синтез
липидов азотосодерж. др. моносахар. аминокислот гликогена
соединений и их производных
Транспорт глюкозы из крови в клетки путем облегченной диффузии, т.е. по градиенту концентрации с участием белка-переносчика. Эффективность работы этого транспорта в клетках большинства органов и тканей зависит от инсулина. Оказывается инсулин увеличивает проницаемость наружных клеточных мембран для глюкозы увеличивая количество белка-переносчика за счет дополнительного его поступления из цитозоля в мембрану. Основная масса клеток является инсулин зависимыми. Исключение составляют эритроциты, гепатоциты и клетки нервной ткани. Поступление в эти клетки глюкозы не зависит от инсулина, поэтому их называют инсулин независимые клетки.
С другой стороны быстрое превращение глюкозы в глюкозу-6-фосфат позволяет поддерживать крайне низкую концентрацию глюкозы в клетках. Тем самым сохраняется градиент концентрации глюкозы между внеклеточной жидкостью и клеткой.
МОБИЛИЗАЦИЯ ГЛИКОГЕНА.
Гликоген как резерв глюкозы накапливается в клетках в постадсорбционном периоде (после всасывания) и расходуется затем.
Расщепление гликогена в печени получило название - мобилизация гликогена. Происходит за счет фермента гликоген-фосфорилазы. Он
катализирует расщепление -1,4-гликозидные связи в молекулах гликогена.
Гликоген гл-1-ф <—-> гл.-6-ф -> глюкоза + НзРО4 (C6H10О5)n фосфоролиз фосфоглюкомутаза глюкоза-6-фосфотаза
Отщепление монозного звена идет в виде гл.-1-фосфата. Как же расщепляются -1,6-гликозидные связи? Оказывается здесь принимают два фермента : деветвящий фермент и амило-1,6-гликозидаза.
Судьба глюкозы-1-фосата. Оказывается за счет активного фермента фосфоглюкомутазы (катализирует прямую и обратную реакцию) глюкоза-1-фосфат превращается в глюкозу-6-фосфат. Если в клетках есть фермент, отщепляющий фосфорил от глюгоза-6-фосфат (глюкоза-6-фосфотаза),то далее образуется свободная глюкоза и фосфорная кислота.
Свободная глюкоза может проникать через наружную клеточную мембрану и поступать в кровяное русло. Ели же глюкозы-6-фосфотазы в клетках нет, то глюкоза может утилизироваться только данной конкретной клеткой.
Поступление глюкозы не нуждается в дополнительном притоке энергии, фосфоролиз идет без участия АТФ. В большинстве органах и тканях человека глюкоза-6-фосфотаза отсутствует поэтому запасенный в них гликоген используется только для собственных нужд. Мышечная ткань, костная, дентин, цемент и др.
Глюкоза-6-фосфотаза имеется только в трех органах: печень, кишечник, почки.
Наиболее существенным в связи с запасами является наличие этого фермента в гепатоцитах. Поскольку печень содержит весьма солидные запасы гликогена. И вообще печень выполняет роль буфера который поглощает глюкозу при повышенном содержании ее в крови и поставляет глюкозу в кровь когда содержание ее начинает падать.
Регуляция процессов синтеза и распада гликогена.
Сопоставим эти процессы.
Эти процессы различны. Это обстоятельство дает возможность раздельно регулировать синтез и распад гликогена.
Регуляция осуществляется на уровне 2 ферментов : гликогенфосфорилазы и гликогенсинтетазы.
Основным механизмом регуляции активности этих ферментов является их ковалентная модификация путем фосфорилирования - дефосфорилирования.
Фосфорилированная фосфорилаза активна (отвечает за расщепление гликогена) ее называют фосфорилаза-А. В то время как фосфорилированная гликогенсинтетаза неактивна, ( активная форма отвечает за синтез) а дефосфорилированные формы наоборот. Дефосфорилированная фосфорилаза неактивна - фосфорилаза-В.
Если оба эти фермента находятся в фосфорилированной форме ( фосфорилаза - активна), то в клетке идет расщепление гликогена с образованием глюкозы. В дефосфорилированном состоянии (дефосфорилированная гликогенсинтетаза - активна) наоборот идет синтез гликогена из глюкозы.
Поскольку гликоген печени играет роль резерва глюкозы для всего организма, то его синтез и распад должен несомненно контролироваться надклеточными регуляторными механизмами, работа которых направлена на поддержание постоянной концентрации глюкозы в крови. Дело в том, что например падение содержания глюкозы в крови ниже 2,2 млмоль/литр -тяжелейший гипогликемический шок, кома, смерть. Организм реагирует на снижение глюкозы крайне отрицательно. Эти механизмы гормональной регуляции должны обеспечивать исключение синтеза гликогена при повышенной концентрации глюкозы в крови и в то же время усиливать расщепление гликогена при падении концентрации глюкозы в крови.
РАСПАД ГЛИКОГЕНА В ПЕЧЕНИ
Первичным сигналом стимулирующим мобилизацию гликогена в печени является снижение концентрации глюкозы в крови. Если вы хотели есть, но вас отвлекли как ребенка и ничего не давать, то дальше он уже не просит есть. Почему?
1 В ответ на это а-клетки островков Лангерганса панкреатической железы выбрасывают в кровь гормон ГЛЮКАГОН.
2 Глюкагон циркулирующий в крови взаимодействует со своим белком-рецептором находящимся на внешней стороне наружной клеточной мембраны и образует гормон-рецепторный комплекс.
3 Затем с помощью специального механизма после образования гормон-рецепторного комплекса происходит активация фермента аденилатциклазы. (G белки меняют свою конформацию и переводят в активную форму аденилатциклазу).
4 Активная форма начинает образовывать циклический АМФ из АТФ.
5 ЦАМФ способен активировать еще один фермент - протеинкиназа. Этот фермент состоит из 4 субъединиц : 2-х регуляторных и 2-х каталитических. Две молекулы ЦАМФ присоединяются к регуляторным субъединицам => происходит изменение конформации и высвобождаются каталитические субъединицы.
6 Каталитические субъединицы обеспечивают фосфорилирование ряда белков, в том числе ферментов. В частности они обеспечивают фосфорилирофание гликогенсинтетазы и это сопровождается блокированием синтеза гликоген. Кроме этого происходит фосфорилирование киназы-фосфорилазы, (слово киназа означает фосфорилирование) которая фосфорилирует гликогенфосфорилазу. Отсюда активация расщепления гликогена с выходом глюкозы в кровь.
7 Выброшенная глюкоза в кровь увеличивает концентрацию доводя ее до нормальных величин.
Стимуляция расщепления гликогена в печени происходит так же за счет выброса адреналина.
1 В качестве главных посредников здесь выступают Р рецепторы в гепатоцитах. Они связывают адреналин т.е. образуется гормоно-адреналиновый комплекс.
2 После образования гормоно-рецепторного комплекса происходит повышение содержания ионов Са в клетках.
3 Са стимулирует Са-зависимую киназу фосфорилазы. Которая в свою очередь активирует фосфорилазу путем ее фосфорилирования.
СТИМУЛЯЦИЯ СИНТЕЗА ГЛИКОГЕНА
Студент получил стипендию и наелся. Съел много сладких вещей. В этом случае наблюдается повышение содержания глюкозы в крови. Что является внешним сигналом для гепатоцитов в отношении стимуляции синтеза гликогена и связывания таким образом лишней глюкозы из русла крови. Срабатывает следующий механизм.
1 При повышении концентрации глюкозы в крови путем пассивной диффузии повышается содержание глюкозы в гепатоцитах. Это повышение содержания глюкозы в крови очень сложным (в основном это аллостерическая модуляция ) механизмом приводит к активации фосфопротеинфосфотазы.
2 Который вызывает дефосфорилирование гликогенсинтетаза, отщепляя от фосфорилирофанных форм фосфорилазы и гликогенсинтетазы фосфорную кислоту и поэтому
3 Дефосфорилированная гликогенсинтетаза превращается в активную форму, что резко стимулирует синтез гликогена.
4 Как только концентрация выравнивается глюкозы в крови так этот механизм выключается.
В снижении фосфорилазной активности в гепатоцитах определенную роль играет инсулин.
1 Выделяется в ответ на повышение концентрации глюкозы в крови. Его связывание с инсулиновыми рецепторами приводит к активации в клетках печени фермента фосфодиастеразы.
2 Это фермент который расщепляет циклическую АМФ. А значит прерывающего активацию гликогенфосфорилазы.
Как только мы съедаем много углеводов мы каждый раз своеобразно бьем кнутом по нашей панкреатической железе, заставляя, выбрасывать инсулин. Отсюда истощение инсулярного аппарата, который наблюдается у людей с неблагополучным статусом.
Регуляция содержания глюкозы в крови и метаболизма углеводов в организме.
Контроль метаболизма углеводов в организме человека осуществляется единой нейрогуморальной системой. Однако в ее работе можно выделить три группы механизма:
Контроль с помощью нервных механизмов. Возбуждение того или иного отдела ЦНС далее передача импульса по нервным стволам, далее выделение медиаторов и далее воздействие на обмен углеводов в клетке.
Контроль с помощью нейрогормональных механизмов. Возбуждение подкорковых метаболических центров, выделение гормонов гипоталамуса, выделение гормонов гипофиза, выделение гормонов периферических желез внутренней секреции и наконец воздействие гормонов на метаболизм углеводов в клетке.
Контроль с помощью метаболитно-гуморальных механизмов. Например повышение концентрации глюкозы в крови приводит к повышению продукции инсулина клетками, а далее следует активация процессов усвоения глюкозы клетками.
Одной из важнейших задач системы регуляции обмена углеводов является поддержание концентрации глюкозы в крови на определенном уровне ( в пределах 3,3-5,5 млмоль/л). Эта концентрация обеспечивает нормальное снабжение клеток различных органов и тканей этим моносахаридом, который служит для них источником энергии и источником пластического материала.
Постоянная концентрация глюкозы в крови - есть результат очень сложного баланса процессов поступления глюкозы в кровь и процессов ее утилизации в органах и тканях.
Важную роль в поддержании концентрации глюкозы играет эндокринная система человека. Целый ряд гормонов повышает содержание глюкозы в крови: глюкагон, адреналин, соматотропин (СТГ), йодированные тиронины, глюкокортикоиды (кортизол).
Глюкагон повышает содержание глюкозы в крови за счет стимуляции процессов мобилизации гликогена в печени. Он стимулирует процесс глюконеогенеза, за счет повышения активности одного из фермента глюконеогенеза : фруктоза-1,6-бисфосфотазу.
Глюкагон выделяется -клетками островков Лангерганса при снижении концентрации глюкозы в крови. Поскольку ответная реакция на повышение содержания глюкагона в крови базируется на изменении активности уже имеющихся в клетках ферментов, наблюдается быстрое повышение концентрации глюкозы в крови. Глюкагон не оказывает не оказывает влияние на скорость расщепления гликогена в мышцах, поскольку мышцы не имеют рецепторов к этому гормону.
Адреналин. Он секретируется в кровь мозговым вещ-вом надпочечников в экстремальных ситуациях.
В первую очередь адреналин стимулирует расщепление гликогена в мышцах и таким образом обеспечивает миоциты энергетическим топливом. Однако в мышцах нет фермента глюкоза-6-фосфотазы, поэтому при расщеплении гликогена в мышцах свободной глюкозы образуется и она не поступает в кровь, т.е. за счет усиления скорости распада гликогена поддерживается энергетика самих мышц. В то же время адреналин способен ускорять расщепление гликогена в печени за счет активации фосфорилазы. Образующаяся глюкоза поступает из гепатоцитов в кровь, что приводит к повышению ее концентрации, поэтому все ситуации сопровождающиеся выбросом адреналина или введением адреналина естественно сопровождается повышением концентрации глюкозы в крови. Это повышение содержания глюкозы развивается очень быстро, поскольку как и в случае глюкагона обусловлено повышением активности имеющихся в гепатоцитах ферментов.
Кортизол. Как и другие глюкокортикоиды вызывает повышение содержания глюкозы в крови за счет 2 основных эффектов:
Во-первых он тормозит поступление глюкозы из крови в клетки ряда перефирических тканей( мышечная соединительная )
Во-вторых кортизол является основным стимулятором глюконеогенеза. Причем стимуляция глюконеогенеза является главным механизмом ответственным за увеличение концентрации глюкозы при выбросе кортизола или при его введении.
Эффект кортизола развивается медленно содержание глюкозы в крови начинает повышаться через 4-6 часов после введения или выброса и достигает максимума примерно через сутки. Повышение содержания глюкозы в крови при действии кортизола сопровождается одновременно увеличением содержания гликогена в печени. В то же время при введении глюкагона содержание гликогена в печени снижается.
Соматотропный гормон гипофиза так же в целом вызывает повышение содержания глюкозы в крови.
Но следует помнить, что введение этого гормона вызывает 2-х фазный ответ:
1 в течении первой четверти часа содержание глюкозы в крови снижается,
2 а затем развивается продолжительное повышение ее уровня в крови.
Механизм этой ответной реакции окончательно не выяснен. Предполагают, что на первом этапе происходит небольшое нарастание содержание инсулина в крови. За счет чего и происходит снижение содержания глюкозы. В более отдаленные периоды повышение содержания глюкозы в крови является следствием нескольких эффектов.
Во-первых это уменьшение поступления глюкозы в некоторые ткани (мышцы).
Во-вторых повышение поступления в кровь глюкагона из поджелудочной железы.
В-третьих уменьшение скорости окисления глюкозы в клетках в результате повышенного поступления в клетки жирных кислот (более высокое энергетическое топливо). Жир. кис. ингибируют пируваткиназу. Длительное введение соматотропного гормона приводит к развитию сахарного диабета.
Тироксин (Т4, тетрайодтиранин). Известно, что при гипертириозе окисление глюкозы идет с нормальной или повышенной скоростью. Содержание глюкозы натощак повышенно, одновременно у больных снижено содержание гликогена в печени.
Инсулин - гормон снижающий содержание глюкозы в крови. Выделяется в кровь -клетками в ответ на повышение содержание глюкозы в крови. Снижение содержания глюкозы в крови обусловлено тремя группами эффектов:
Инсулин повышает проницаемость клеточных мембран для глюкозы за счет активации белка-переносчика и способствует переходу глюкозы из крови и межклеточной жидкости в клетки.
Инсулин улучшает усвоение глюкозы клетками
а) стимулирует фосфорилирование глюкозы и ее окислительный распад
б) ускоряет синтез гликогена
в) превращение глюкозы в триглицериды
Тормозит процессы глюконеогенеза и расщепление гликогена в гепатоцитах до глюкозы.
Ответная реакция на введение или выброс инсулина развивается быстро. В физиологическом плане гормоны глюкагон и инсулин не являются антагонистами. Глюкагон обеспечивает перевод резервного гликогена в глюкозу, а инсулин обеспечивает поступление этой глюкозы из крови в клетки перефирических тканей и ее последующую утилизацию в клетках.
Почему их нельзя считать антагонистами?
В суммарном плане влияние на концентрацию глюкозы их можно назвать антагонистами один гипергликемический, другой гипогликемический, однако в физиологическом плане их нельзя назвать антагонистами, поскольку один за счет распада гликогена увеличивает концентрацию глюкозы, а второй (инсулин) обеспечивает проникновение этой глюкозы и ее последующую утилизацию.
Синтез гликозаминокликанов стимулируется тестостероном и соматотропным гормоном, причем под действием соматотропина в печени синтезируется пептид (инсулиноподобный фактор роста). Именно пептид является истинным стимулятором синтеза гетерополисахаридов межклеточного вещества соединительной ткани. Синтез гликозаминогликанов тормозят глюкокортикоиды. Замечено, что в местах инъекции кортизола количество межклеточного вещества в соединительной ткани уменьшается.
Изменения в крови и появление в моче.
Повышение показателя имеет место при диабете, гипертиреозе, аденокортицизме (гиперфункции коры надпочечников), гиперпитуитаризме, иногда при заболеваниях печени.
Снижение показателя имеет место при гиперин-сулинизме, недостаточности функции надпочечников, гипопитуитаризме при печеночной недостаточности (иногда), функциональной гипогликемии и при приеме гипогликемических препаратов.
В моче
Глюкоза в нормальной моче имеется в виде следов и не превышает 0,02 %, что обычными качест венными методами не определяется. Появление сахара в моче (глюкозурия) может быть в физиологических условиях обусловлено пищей с больших содержанием углеводов, после лекарств, например диуретин, кофеин, кортикостроиды. Патологическая глюкозурия чаще всего бывает при сахарном диабе те, реже при тиреотоксикозе, синдроме Иценко — Кушинга и т. д.