
- •Основные характеристики и параметры диодов
- •Диодные выпрямители
- •Характеристики тиристоров
- •Классификация транзисторов
- •По основному полупроводниковому материалу[править | править исходный текст]
- •Комбинированные транзисторы[править | править исходный текст]
- •По мощности[править | править исходный текст]
- •По исполнению[править | править исходный текст]
- •По материалу и конструкции корпуса[править | править исходный текст]
- •Прочие типы[править | править исходный текст]
- •Физические явления в транзисторах
- •Однополупериодный выпрямитель (четвертьмост)[править | править исходный текст]
- •Полумост[править | править исходный текст]
- •Полный мост (Гретца)[править | править исходный текст]
- •Три четвертьмоста параллельно (схема Миткевича)[править | править исходный текст]
- •Три полумоста параллельно, объединённые кольцом/треугольником («треугольник-Ларионов»)[править | править исходный текст]
- •Три полумоста параллельно, объединённые звездой («звезда-Ларионов»)[править | править исходный текст]
- •Три двухфазных двухчетвертьмостовых параллельных выпрямителей Миткевича параллельно (6 диодов)[править | править исходный текст]
- •Три двухфазных двухчетвертьмостовых параллельных выпрямителей Миткевича последовательно (6 диодов)[править | править исходный текст]
- •Три полных моста параллельно (12 диодов)[править | править исходный текст]
- •Три полных моста последовательно (12 диодов)[править | править исходный текст]
- •Отрицание, не[править | править исходный текст]
- •Конъюнкция (логическое умножение). Операция и[править | править исходный текст]
- •Дизъюнкция (логическое сложение). Операция или[править | править исходный текст]
- •Инверсия функции конъюнкции. Операция и-не (штрих Шеффера)[править | править исходный текст]
- •Классификация[править | править исходный текст] Степень интеграции[править | править исходный текст]
- •Технология изготовления[править | править исходный текст]
- •Вид обрабатываемого сигнала[править | править исходный текст]
- •Типы триггеров[править | править исходный текст]
- •Мультиплексоры и демультиплексоры
- •Применение[править | править исходный текст]
- •Теоретические основы[править | править исходный текст]
- •Уравнение для потенциала в узлах[править | править исходный текст]
- •Пример применения[править | править исходный текст]
- •Метод эквивалентного генератора (теорема об активном двухполюснике)
- •Описание явления
- •Замечания
- •Применение
- •Описание явления[
- •Замечания
- •Применение
- •Четырехпроводная цепь
- •А) Зарядка конденсатора
- •Б) Разряд конденсатора
- •5.5 Переходные процессы в цепи с последовательно включенными резисторами и конденсатором
- •5.5.1. Разряд конденсатора на резистор
- •5.5.2. Включение цепи с резистором и конденсатором на постоянное напряжение (заряд конденсатора)
- •5.5.3. Включение цепи с резистором и конденсатором на синусоидальное напряжение
- •5.6. Разряд конденсатора на цепь с резистором и катушкой
- •5.6.1. Составление характеристического уравнения. Определение собственных частот цепи
- •5.6.2. Апериодический разряд конденсатора на катушку и резистор
- •5.6.3. Предельный апериодический разряд конденсатора на катушку и резистор
- •5.6.4. Периодический (колебательный) разряд конденсатора на цепь с резистором и катушкой
- •5.7. Включение контура из конденсатора, резистора, катушки на постоянное напряжение
- •5.7.1. Апериодический процесс
- •5.7.2. Колебательный процесс
- •57.Устройство и принцип действия однофазного трансформатора
- •62.Вращающееся магнитное поле.
- •71. Устройство и принцип действия машины постоянного тока в режиме генератора и двигателя
- •75.Понятие о генераторах постоянного тока. Генераторы постоянного тока с самовозбуждением.
Полупроводниковые диоды, их параметры и характеристики. Область применения диодов.
Полупроводниковый диод — полупроводниковый прибор с одним электрическим переходом и двумя выводами (электродами). В отличие от других типов диодов, принцип действия полупроводникового диода основывается на явлении p-n-перехода.
Плоскостные p-n-переходы для полупроводниковых диодов получают методом сплавления, диффузии и эпитаксии.
Основные характеристики и параметры диодов
Вольт-амперная характеристика
Максимально допустимое постоянное обратное напряжение
Максимально допустимое импульсное обратное напряжение
Максимально допустимый постоянный прямой ток
Максимально допустимый импульсный прямой ток
Номинальный постоянный прямой ток
Прямое постоянное напряжение на диоде при номинальном токе (т. н. «падение напряжения»)
Постоянный обратный ток, указывается при максимально допустимом обратном напряжении
Диапазон рабочих частот
Ёмкость
Пробивное напряжение (для защитных диодов и стабилитронов)
Тепловое сопротивление корпуса при различных вариантах монтажа
Максимально допустимая мощность рассеивания
Вольт-ампе́рная
характери́стика (ВАХ) —
зависимость тока через двухполюсник от напряжения на
этом двухполюснике. Описывает поведение
двухполюсника на постоянном
токе.
А также функция
выражающая (описывающая) эту зависимость.
А также - график этой
функции. Чаще всего рассматривают ВАХ
нелинейных элементов (степень нелинейности
определяется коэффициентом нелинейности ),
поскольку для линейных элементов
ВАХ представляет собой прямую линию
(описывающуюся законом
Ома)
и не представляет особого интереса.
Характерные примеры элементов, обладающих существенно нелинейной ВАХ: диод, тиристор, стабилитрон.
Для трёхполюсных элементо в (таких, как транзистор, тиристор или ламповый триод) часто строят семейства кривых, являющимися ВАХ для двухполюсника при так или иначе заданных параметрах на третьем выводе элемента.
Необходимо отметить, что в реальной схеме, особенно работающей с относительно высокими частотами (близкими к границам рабочего частотного диапазона) для данного устройства реальная зависимость напряжения от времени может пробегать по траекториям, весьма далёким от «идеальной» ВАХ. Чаще всего это связано с ёмкостью или другими инерционными свойствами элемента.
Диодные выпрямители
Диоды широко используются для преобразования переменного тока в постоянный (точнее, в однонаправленный пульсирующий). Диодный выпрямитель или диодный мост (То есть 4 диода для однофазной схемы, 6 для трёхфазной полумостовой схемы или 12 для трёхфазной полномостовой схемы, соединённых между собой по схеме) — основной компонент блоков питания практически всех электронных устройств. Диодный трёхфазный выпрямитель по схеме А. Н. Ларионова на трёх параллельных полумостах применяется в автомобильных генераторах, он преобразует переменный трёхфазный ток генератора в постоянный ток бортовой сети автомобиля. Применение генератора переменного тока в сочетании с диодным выпрямителем вместо генератора постоянного тока с щёточно-коллекторным узлом позволило значительно уменьшить размеры автомобильного генератора и повысить его надёжность.
В некоторых выпрямительных устройствах до сих пор применяются селеновые выпрямители. Это вызвано той особенностью данных выпрямителей, что при превышении предельно допустимого тока, происходит выгорание селена (участками), не приводящее (до определенной степени) ни к потере выпрямительных свойств, ни к короткому замыканию — пробою.
В высоковольтных выпрямителях применяются селеновые высоковольтные столбы из множества последовательно соединённых селеновых выпрямителей и кремниевые высоковольтные столбы из множества последовательно соединённых кремниевых диодов.
Если соединено последовательно и согласно (в одну сторону) несколько диодов, пороговое напряжение, необходимое для отпирания всех диодов, увеличивается.
Тиристоры, их параметры и характеристики. Область применения.
Тири́стор — полупроводниковый прибор, выполненный на основе монокристалла полупроводника с тремя или более p-n-переходами и имеющий два устойчивых состояния: закрытое состояние, то есть состояние низкой проводимости, и открытое состояние, то есть состояние высокой проводимости.
Тиристор можно рассматривать как электронный выключатель (ключ). Основное применение тиристоров — управление мощной нагрузкой с помощью слабых сигналов, а также переключающие устройства. Существуют различные виды тиристоров, которые подразделяются, главным образом, по способу управления и по проводимости. Различие по проводимости означает, что бывают тиристоры, проводящие ток в одном направлении (например тринистор, изображённый на рисунке) и в двух направлениях (например, симисторы, симметричные динисторы).
Тиристор имеет нелинейную вольт-амперную характеристику (ВАХ) с участком отрицательного дифференциального сопротивления. По сравнению, например, с транзисторными ключами, управление тиристором имеет некоторые особенности. Переход тиристора из одного состояния в другое в электрической цепи происходит скачком (лавинообразно) и осуществляется внешним воздействием на прибор: либо напряжением (током), либо светом (для фототиристора). После перехода тиристора в открытое состояние он остаётся в этом состоянии даже после прекращения управляющего сигнала, если протекающий через тиристор ток превышает некоторую величину, называемую током удержания.