- •А. И. Мирошник, о. А. Лысенко электрический привод
- •Введение
- •1. Понятие «Электропривод»
- •1.1. Структурная схема электропривода
- •1.2. Функции электропривода и требования к нему
- •1.3. Классификация электроприводов
- •1.4. Основные направления развития электропривода
- •2. Механика электропривода
- •2.1. Активные и реактивные моменты сопротивления
- •2.2. Приведение к валу электродвигателя моментов и сил сопротивления, моментов инерции и инерционных масс
- •2.3. Механические характеристики исполнительных органов и электродвигателей
- •2.4. Уравнение движения электропривода
- •2.5. Установившееся движение и устойчивость установившегося движения электропривода
- •2.6. Неустановившееся движение электропривода при постоянном динамическом моменте
- •2.7. Неустановившееся движение электропривода при линейной зависимости моментов двигателя и исполнительного органа от скорости
- •2.8. Неустановившееся движение электропривода при произвольной зависимости динамического момента от скорости
- •3. Понятие о регулировании координат, режимах работы и системах управления электропривода
- •3.1. Регулирование скорости электроприводов
- •3.2. Регулирование тока и момента двигателей
- •3.3. Регулирование положения электроприводов
- •3.4. Режимы работы электроприводов
- •3.5. Общие принципы построения систем управления электроприводами
- •4. Режим работы и характеристики электропривода с двигателем постоянного тока независимого возбуждения (дпт нв)
- •4.1. Схема включения, режимы работы и статические характеристики двигателя постоянного тока независимого возбуждения (дпт нв)
- •4.2. Энергетические режимы работы дпт нв
- •5. Автоматическое управление дпт нв при пуске и торможении при питании его от сети
- •5.1. Автоматический пуск эд в функции эдс
- •5.2. Автоматический пуск эд в функции тока
- •5.3. Автоматический пуск эд в функции времени
- •5.4. Автоматический пуск и динамическое торможение эд
- •5.5. Электромеханические переходные процессы при учете индуктивности цепи якоря Lя
- •6. Регулирование угловой скорости дпт нв
- •6.1. Регулирование угловой скорости путем введения добавочных резисторов (сопротивлений) в цепь якоря
- •6.2. Регулирование угловой скорости уменьшением магнитного потока
- •6.3. Регулирование угловой скорости дпт нв путем изменения напряжения на якоре в системе г-д
- •6.4. Регулирование угловой скорости эд в системе «Управляемый тиристорный выпрямитель – дпт нв»
- •6.5. Переходные процессы при изменении магнитного потока дпт нв
- •6.6. Регулирование координат электропривода в системе источник тока – электродвигатель
- •7. Электроприводы постоянного тока с двигателями последовательного и смешанного возбуждения
- •7.1. Механические и электромеханические характеристики двигателей постоянного тока последовательного возбуждения
- •7.2. Тормозные режимы дпт пв
- •7.3. Электропривод с двигателем постоянного тока смешанного возбуждения дпт св
- •8. Электроприводы с асинхронным двигателем
- •8.1. Механические характеристики асинхронных двигателей
- •8.2. Электромеханические характеристики ад
- •8.3. Определение кпд ад и ад
- •8.4. Тормозные режимы ад
- •8.5. Типовые схемы управления электроприводов с асинхронными двигателями
- •К ак000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000
- •8.6. Регулирование координат асинхронного двигателя с помощью резисторов
- •8.7. Регулирование скорости асинхронного двигателя изменением числа пар полюсов
- •8.8. Регулирование координат электропривода с асинхронным двигателем изменением напряжения
- •8.9. Регулирование координат электропривода в системе преобразователь частоты – двигатель
- •9. Синхронные двигатели
- •9.1. Механические и угловые характеристики синхронного двигателя (сд)
- •9.2. Схемы и способы пуска и торможения сд
- •9.3. Компенсация коэффициента мощности (cosφ)
- •Библиографический список
- •Оглавление
- •4. Режим работы и характеристики электропривода с двигателем
2.8. Неустановившееся движение электропривода при произвольной зависимости динамического момента от скорости
При
определении
;
;
при сложных зависимостях
момента
двигателя и момента сопротивления от
скорости, пользуются численным методом
Эйлера. Суть
его в том, что в уравнении движения
электропривода дифференциалы переменных
и
заменяются малыми приращениями
и
.
Покажем использование метода Эйлера на примере пуска асинхронным электродвигателем центробежного насоса. Механические характеристики ЭД и центробежного насоса приведены на рис. 2.9 [2].

Рис. 2.9. Механические характеристики ЭД и ИО
Ось скорости
разбивают на малые и равные участки
∆ω.На каждом участке определяют средние моменты
и т.д.,
и т.д.Затем составляется таблица 2.1 и по ней определяют зависимости
.
Таблица 2.1
|
ω1=∆ω1 |
|
|
t1=∆t1 |
|
ω2=ω 1+∆ω2 |
|
|
t2= t1+∆t2 |
|
ω3=ω 2+∆ω3 |
|
|
t3=t2+∆t3 |
|
… |
… |
… |
… |
|
ωn |
Мдn |
|
tn |
;
и т.д.
Зависимость ∆φ можно определить по выражению ∆φ = ω∆t.
Зависимости
приведены на рисунке 2.10.

Рис. 2.10. Характеристики
при пуске ЭД
Примечание. По аналогичной методике можно построить вышеуказанные зависимости и при торможении электропривода.
3. Понятие о регулировании координат, режимах работы и системах управления электропривода
На рисунке 3.1 приведена структура механической части электропривода [2,4].

Рис. 3.1. Структура механической части электропривода
В структуре:
ЭД – электродвигатель:
МПУ – механическое передаточное устройство;
ИО – исполнительный орган;
и
–
угловые скорости ЭД и ИО;
и
– угловые ускорения ЭД и ИО;
и
– угол поворота вала ЭД и ИО;
–линейное ускорение
ИО;
–величина линейного
перемещения ИО.
Параметры ИО можно
регулировать механическим путем при
неизменной скорости ЭД, изменяя величины
и
коробки скоростей или вариатора:
;
;
;
;
;
.
Коробки скоростей или механические вариаторы могут быть громоздкими (сложными). Их применение уменьшает надежность и КПД электропривода. Поэтому на практике в основном применяют электрический способ регулирования, воздействуя на параметры электродвигателя или источника питания. Этот способ имеет лучшие технико-экономические показатели. Однако на некоторых металлообрабатывающих станках применяют смешанный способ регулирования.
В теории электропривода механические, электрические и магнитные переменные, характеризующие работу двигателя, – скорость, ускорение, положение вала, момент, ток, магнитный поток и т.д. – часто называют координатами. Поэтому управление движением исполнительного органа электрическим способом осуществляется за счет регулирования координат (переменных) электродвигателя.
Существенно отметить, что регулирование координат электропривода должно осуществляться для управления как установившимся, так и неустановившимся движением исполнительного органа.
Типичным примером регулирования переменных может служить ЭП пассажирского лифта. При пуске и останове кабины для обеспечения комфортности пассажиров ускорение и замедление ее движения не должно быть выше допустимого уровня. Перед остановкой скорость кабины должна снижаться, т.е. она должна регулироваться. И, наконец, кабина с заданной точностью должна останавливаться на требуемом этаже, т.е. необходимо обеспечивать заданное положение (позиционирование) кабины лифта.
Пользуясь рассмотренным примером, отметим то важное обстоятельство, что часто электропривод должен обеспечить регулирование одновременно нескольких координат: скорости, ускорения и положения исполнительного органа.
При изготовлении бумаги, тканей, кабельных изделий, различных пленок, прокатке металлов требуется обеспечение определенного натяжения этих материалов, что также осуществляется с помощью ЭП. Регулирования координат требуют и многие другие рабочие машины и механизмы: подъемные краны, металлообрабатывающие станки, транспортеры, насосные агрегаты, роботы и манипуляторы и т.д.
