
- •Материаловедение и технология конструкционных материалов
- •Оглавление
- •Раздел I. Строение и свойства материалов
- •Раздел II. Структура, свойства и термическая обработка железоуглеродистых сплавов
- •Раздел III. Конструкционные и инструментальные материалы
- •Раздел IV. Способы литья в металлургии и в машиностроении
- •Раздел V. Обработка металлов давлением в металлургии и машиностроении
- •Раздел VI. Обработки резанием
- •Раздел VII. Теплофизические основы и технологии сварочного производства
- •Раздел VIII. Изготовление деталей из композиционных материалов, электро-физико-химические и нетрадиционные методы обработки
- •Введение
- •Раздел VIII посвящен получению заготовок методом порошковой металлургии и заготовок из полимерных материалов, а также электро-физико-химическим и нетрадиционным методам обработки.
- •Раздел I. Строение и свойства материалов
- •1. Строение, структура и свойства металлов и сплавов
- •1.1. Агрегатные состояния
- •1.2. Металлы и их кристаллическое строение
- •1.3. Реальное строение металлов и дефекты кристаллических решеток
- •1.4. Строение сплавов
- •1.5. Основные закономерности процесса кристаллизации, превращения в твердом состоянии, полиморфизм
- •1.6. Превращения в твердом состоянии. Полиморфизм
- •2. Механические, физические и технологические свойства материалов
- •2.1. Свойства материалов
- •2.2. Деформации и напряжения
- •2.3. Испытание материалов на растяжение и ударную вязкость
- •2.4. Определение твердости
- •2.5. Упругая и пластическая деформации, наклеп и рекристаллизация
- •Раздел II. Структура, свойства и термическая обработка железоуглеродистых сплавов
- •3. Диаграмма «железо – углерод (цементит)»
- •3.1. Общий обзор диаграмм состояния
- •5. Диаграмма состояния для сплавов, образующих химические соединения.
- •7. Диаграмма состояния сплавов с полиморфными превращениями компонентов и эвтектоидным превращением.
- •3.2. Компоненты, фазы и структурные составляющие железоуглеродистых сплавов
- •3.3. Изменения структуры сталей при охлаждении
- •3.4. Изменения структуры чугунов при охлаждении
- •3.5. Классификация и свойства углеродистых сталей
- •3.6. Классификация и свойства чугунов
- •4. Термическая и химико-термическая обработка углеродистых сталей
- •4.1. Влияние нагрева и скорости охлаждения углеродистой стали на ее структуру
- •4.2. Отжиг углеродистых сталей
- •4.3. Закалка углеродистых сталей
- •4.4. Отпуск закаленных углеродистых сталей
- •4.5. Химико-термическая обработка сталей
- •Раздел III. Конструкционные и инструментальные материалы
- •5. Конструкционные стаЛи и сплавы
- •5.1. Влияние легирующих элементов на структуру, механические свойства сталей и превращения при термообработке
- •5.2. Маркировка и классификация легированных сталей
- •5.3. Конструкционные стали
- •5.4. Коррозионно-стойкие стали
- •5.5. Жаропрочные стали и сплавы
- •5.6. Жаростойкие стали и сплавы
- •5.7. Инструментальные стали и сплавы для обработки материалов резанием
- •5.8. Инструментальные стали для обработки давлением
- •6. Титановые, медные и алюминиевые сплавы
- •6.1. Титан и его сплавы
- •6.2. Медь и её сплавы
- •6.3. Алюминий и его сплавы
- •7. Неметаллические материалы
- •7.1. Полимеры и пластмассы
- •7.2. Резиновые и клеящие материалы
- •7.3. Стекло, ситаллы, графит
- •7.4. Композиционные материалы
- •Раздел IV. Способы литья в металлургии и машиностроении
- •8. Производство чугуна и стали
- •8.1. Производство чугуна
- •8.2. Сущность процесса выплавки стали
- •8.3. Производство стали в мартеновских печах и конвертерах
- •8.4. Производство и повышение качества сталей и сплавов в электропечах
- •9. Способы литья
- •9.1. Изготовление песчаных литейных форм
- •9.2. Основные операции получения отливок в песчаных формах
- •9.3. Закономерности охлаждения отливок в литейных формах
- •9.4. Литье в оболочковые формы и по выплавляемым моделям
- •9.5. Литье в металлические формы, под давлением, центробежное литье
- •Раздел V. Обработка металлов давлением в металлургии и машиностроении
- •10. Горячая и холодная обработка металлов давлением. Прокатка
- •10.1. Горячая и холодная обработка металлов давлением
- •10.2. Нагрев заготовок перед обработкой давлением
- •10.3. Прокатка: схемы процесса, продукция, оборудование и инструмент
- •10.4. Деформации при прокатке
- •10.5. Мощность и усилия деформирования при прокатке
- •10.6. Теплообмен и температура при горячей прокатке
- •11. Волочение и прессование
- •11.1. Волочение: схема процесса, продукция, оборудование и инструмент
- •11.2. Деформации и напряжения при волочении
- •11.3. Работа, мощность и усилия при волочении
- •11.4. Температура при волочении
- •11.5. Прессование: схемы процесса, продукция, инструмент
- •11.6. Деформации, работа и усилия деформирования при прессовании
- •12. Способы обработки металлов давлением в машиностроении
- •12.1. Общая характеристика операций ковки и горячей объемной штамповки
- •12.2. Оборудование для ковки и штамповки
- •12.3. Деформации, работа и усилия при различных операциях ковки и штамповки
- •12.4. Нагрев и охлаждение штампов при горячей штамповке
- •12.5. Холодная листовая штамповка
- •Тесты для проверки знаний
- •Раздел VI. Обработка резанием
- •13. Характеристики способов обработки резанием, деформации и силы резания
- •13.1. Способы обработки резанием
- •13.2. Металлорежущие станки
- •13.3. Режущие инструменты, действительные углы режущего лезвия
- •13.4. Характеристики режима резания и сечения срезаемого слоя
- •14. Деформации, напряжения, силы и температуры при резании
- •14.1. Схематизация стружкообразования и характеристики деформаций при резании
- •14.2. Силы при точении
- •14.3. Схема и расчет сил при торцовом фрезеровании
- •14.4. Предел текучести и температура деформации при резании
- •14.5. Температура полуплоскости от равномерно распределенного быстродвижущегося источника тепла
- •14.6. Температура передней поверхности режущего лезвия
- •14.7. Температура задней поверхности режущего лезвия
- •15. Износостойкость инструмента и режимы резания, проектирование технологического процесса
- •15.1. Изнашивание и износостойкость режущих инструментов
- •15.2. Обрабатываемость материалов, характеристики обрабатываемости
- •15.3. Назначение режимов резания и параметров инструмента при обработке резанием
- •Тесты для проверки знаний
- •Раздел VII. Теплофизические основы и технологии сварочного производства
- •16. Характеристика способов сварки и схематизация сварочных процессов
- •16.1. Классификация и технологические характеристики различных способов сварки
- •16.2. Основные источники энергии, применяющиеся при сварке
- •16.3. Схематизация процессов распространения тепла при сварке
- •16.4. Тепловой баланс электрической дуговой сварки
- •17. Способы термической сварки
- •17.1. Ручная дуговая сварка
- •17.2. Автоматическая дуговая сварка под флюсом
- •17.3. Сварка в защитных газах
- •17.4. Плазменная сварка и резка
- •17.5. Электрошлаковая сварка
- •17.6. Газовая сварка
- •18. Термомеханические способы сварки
- •18.1. Электрическая контактная стыковая сварка
- •18.2. Электрическая контактная точечная сварка
- •18.3. Электрическая контактная шовная сварка
- •18.4. Конденсаторная сварка
- •18.5. Сварка трением
- •18.6. Ультразвуковая сварка
- •Тесты для проверки знаний
- •Раздел VIII. Изготовление деталей из композиционных материалов, электро-физико-химические и нетрадиционные методы обработки
- •19. Получение деталей методом порошковой металлургии
- •19.1. Технологический процесс получения деталей методом порошковой металлургии
- •Химико-металлургический способ
- •19.2. Получение порошка исходного материала
- •19.3. Формование заготовок
- •19.4. Спекание и доводка заготовок
- •20. Производство изделий из полимерных материалов
- •20.1. Способы формообразования деталей из полимеров в вязкотекучем состоянии
- •20.2. Обработка полимеров в высокоэластичном состоянии
- •20.3. Обработка полимерных материалов в твердом состоянии
- •20.4. Сварка полимерных материалов
- •21. Электро-физико-химические и нетрадиционные методы обработки
- •21.1. Классификация электро-физико-химических методов обработки
- •21.2. Электроэрозионная обработка
- •21.3. Электрохимическая (анодно-химическая) обработка
- •21.4. Ультразвуковая размерная обработка
- •21.5. Лучевая обработка
- •21.6. Комбинированные процессы обработки
- •21.7. Нетрадиционные методы обработки
- •21.8. Методы формирования изделий путем наращивания поверхности
- •21.9. Методы поверхностной модификации свойств изделий
- •Тесты для проверки знаний
- •Библиографический список
9.4. Литье в оболочковые формы и по выплавляемым моделям
Литье в оболочковые формы – это способ получения отливок свободной заливкой расплава в оболочковых формах.
Оболочковая (корковая) форма – разовая литейная форма, изготовленная из двух скрепленных рельефных полуформ с толщиной стенок 6–10 мм (рис. 9.8).
Рис. 9.8. Схема изготовления оболочковой формы: 1 – металлическая модельная плита, 2 – опрокидывающийся бункер, 3 – формовочная смесь, 4 – песчано-смоляная оболочка, 5 – толкатели, 6 – литейная оболочковая форма, 7 – опоки-контейнеры, 8 – кварцевый песок или металлическая дробь
Оболочковые формы изготавливают из смеси, состоящей из мелкого кварцевого песка и крепителя – фенолоформальдегидной порошкообразной термореактивной смолы (пульвербакелита), на специальных автоматических или полуавтоматических машинах.
Термореактивная смола плавится при нагревании и обволакивает зерна песка, при дальнейшем нагревании затвердевает и связывает зерна песка в прочную оболочку.
Соединение полуформ производят по фиксаторам, с помощью скоб, струбцин или склеиванием.
Оболочковые формы характеризуются достаточно высокой прочностью, газопроницаемостью, податливостью. Благодаря меньшей толщине стенок оболочковые формы позволяют обеспечивать интенсивный и стационарный отвод тепла. В связи с этим отливки, полученные в оболочковых формах, имеют более плотную, однородную и мелкозернистую структуру, высокие механические свойства, меньшие усадку и внутренние напряжения, чем при литье в песчаные формы. Тепловой поток, отводящийся из расплава или от отливки в литейную форму, может регулироваться изменением материала наполнителя формы. В кварцевом песке отливка охлаждается медленнее, чем в металлической дроби.
Отливки в оболочковых формах получают 5–7-го класса точности с шероховатостью поверхности, соответствующей 4–6-му классу, что позволяет сократить или исключить процесс очистки.
Способом литья в оболочковые формы получают отливки массой от 0,25 до 100 кг практически из любых литейных сплавов. Этим способом изготавливают ребристые мотоциклетные цилиндры, коленчатые валы автомобильных двигателей.
Преимущества способа литья в оболочковые формы: возможность получения тонкостенных отливок сложной формы; гладкая и чистая поверхность отливок; небольшой расход смеси: в 8–10 раз меньше, чем при литье в песчано-глинистые формы; качественная структура металла за счет повышенной газопроницаемости форм и регулирования теплоотвода; широкая возможность автоматизации; небольшие допуски на обработку резанием.
Недостаток этого способа состоит в высокой стоимости материалов, оснастки и оборудования. Затраты на материалы, оснастку и оборудование окупаются при больших программах выпуска отливок, т. е. в крупносерийном и массовом производствах.
Литье по выплавляемым моделям – это способ получения фасонных отливок из металлических сплавов в неразъемной оболочковой форме, рабочая полость которой образована удалением литейной модели выжиганием, растворением или выплавлением в горячей воде.
Выплавляемую модель (рис. 9.9а) отливки получают путем заполнения металлической пресс-формы жидким или пастообразным модельным составом.
Жидким модельным составом пресс-форму заполняют свободной заливкой или под давлением. Пастообразным модельным составом пресс-форму заполняют запрессовкой твердожидкого состава с 8–20 % воздуха. В пресс-формах модельный состав затвердевает и остывает. Затем модели отливок извлекают и объединяют в блоки путем соединения с отдельно изготовленными выплавляемыми моделями литниковой системы (рис. 9.9б). Для получения оболочковой формы полученный модельный блок помещают в огнеупорную суспензию (рис. 9.9в), вынимают и обсыпают песком (рис. 9.9г), кварцевым песком, крошкой шамота. Полученное огнеупорное покрытие подвергают сушке на воздухе или в парах аммиака (рис. 9.9д). Затем на блок наносятся второй и последующие слои. Первый слой обсыпают мелкозернистым песком (размер частиц 0,2–0,315 мм); последующие слои – крупнозернистым песком. Обычно керамическая оболочка состоит из 3–8 последовательно наносимых слоев (может достигать 20 и более), обеспечивающих общую толщину стенок формы от 2 до 5 мм. В ряде случаев допускаются и меньшие значения толщины стенок (0,5–1,5 мм) керамической оболочки.
После сушки последнего слоя модель выплавляют. Легкоплавкие составы удаляют в ваннах с горячей водой (рис. 9.9е), а тугоплавкие выплавляют горячим воздухом, перегретым паром под высоким давлением при температуре до 120 °С и более, высокочастотным нагревом и др. Затем оболочковую форму подсушивают на воздухе (рис. 9.9ж).
Перед заливкой расплавленным металлом оболочку засыпают в опоке (рис. 9.9з) опорным наполнителем (чаще кварцевым песком) с целью упрочнения, защиты от резких изменений температуры при прокаливании и заливке металлом. Опорный наполнитель обеспечивает длительное сохранение высокой температуры в полости формы после прокаливания и, как следствие, хорошую заполняемость формы металлом при литье тонкостенных деталей.
После этого форма помещается в печь для прокаливания (рис. 9.9и) при температуре 800–1100 °С с целью удаления остатков модельных составов, влаги, продуктов неполного гидролиза, а также завершения процессов ее твердения. Это способствует улучшению условий заливки металла.
Заливка металла (рис. 9.9к) осуществляется в горячие или охлажденные формы. Температура формы зависит от состава литейного сплава: при заливке стали она составляет 800–900 °С, сплавов на основе никеля – 900–100 °С, меди – 600–700 °С, алюминия и магния – 200–250 °С.
а б в г д е ж з и к л
Рис. 9.9. Схема процесса изготовления отливок по выплавляемым моделям
Качество металла отливки и его свойства зависят от состава сплава, условий его плавки и заливки расплава в форму, а также от характера процесса кристаллизации отливки.
Благодаря термостойкости и прочности высокоогнеупорных оболочковых форм при литье по выплавляемым моделям достаточно широко используется направленная кристаллизация отливок. Это обеспечивает формирование столбчатой и монокристаллической структуры с высоким уровнем физико-механических и других эксплуатационных свойств.
К недостаткам этого способа литья следует отнести многооперационность, трудоемкость и длительность процесса, многообразие материалов, используемых для изготовления формы.
Способом литья по выплавляемым моделям изготавливают сложные отливки высокого качества, например: турбинные лопатки из жаропрочных сплавов, колеса насосов из коррозионно-стойких сплавов, детали турбомашин, постоянные магниты с определенной кристаллографической ориентацией структуры, художественные изделия и др. При этом может быть существенно уменьшена или полностью исключена механическая обработка деталей.