
- •Материаловедение
- •Лабораторная работа № 1 Микроскопический анализ металлов
- •1. Содержание работы
- •1.1. Макроанализ
- •1.2. Микроанализ
- •1.3. Приготовление микрошлифа
- •1.4. Микроскопы металлографические
- •1.5. Проведение испытаний
- •1.6. Влияние размера зерна поликристаллических материалов на их механические свойства
- •1 − Мелкое зерно (0,04 мм); 2 − крупное зерно (0,09 мм)
- •2. Порядок выполнения работы
- •2.1. Подготовка микроскопа к визуальному наблюдению
- •2.2. Определение цены деления
- •2.3. Определение величины зерна стали
- •3. Контрольные вопросы
- •4. Отчет по лабораторной работе № 1 Микроскопический анализ металлов
- •Лабораторная работа № 2 Изучение процесса кристаллизации
- •1. Содержание работы
- •1.1. Теоретические основы процесса кристаллизации металлов
- •1.2. Кристаллизация солей
- •2. Порядок выполнения работы
- •3. Контрольные вопросы
- •4. Отчет по лабораторной работе №2 Изучение процесса кристаллизации
- •Лабораторная работа № 3 Построение диаграммы состояния «Свинец – олово» термическим методом
- •1. Содержание работы
- •1.1. Общие сведения
- •1.2. Построение диаграммы состояния
- •2. Порядок выполнения работы
- •3. Контрольные вопросы
- •4. Отчет по лабораторной работе №3 Построение диаграммы состояния «Свинец – олово» термическим методом
- •Лабораторная работа № 4 Микроструктура железоуглеродистых сплавов в равновесном состоянии
- •1. Содержание работы
- •1.1. Фазы и структуры диаграммы «Железо – цементит»
- •1.2. Классификация железоуглеродистых сплавов
- •1.3. Влияние концентрации углерода на свойства железоуглеродистых сплавов
- •1.4. Структура и свойства железоуглеродистых сплавов
- •2. Порядок выполнения работы
- •3. Контрольные вопросы
- •4. Отчет по лабораторной работе № 4 Микроструктура железоуглеродистых сплавов в равновесном состоянии
- •Лабораторная работа № 5 Термическая обработка стали
- •1. Содержание работы
- •1.1. Основные виды термической обработки стали и их назначение
- •1.2. Процессы нагрева стали
- •1.3. Процессы охлаждения стали
- •1.4. Превращение аустенита при отжиге
- •1.5. Превращение аустенита при нормализации
- •1.6. Превращение аустенита при закалке
- •1.7. Влияние температуры отпуска на структуру стали
- •2. Порядок выполнения работы
- •3. Контрольные вопросы
- •4. Отчет по лабораторной работе № 5 Термическая обработка стали
- •Лабораторная работа № 6 Микроструктуры термически обработанных углеродистых сталей
- •1. Содержание работы
- •1.1. Влияние скорости охлаждения на превращение аустенита
- •1.2. Влияние температуры отпуска на превращение мартенсита закалки
- •1.3. Влияние температуры отжига на структуру и свойства стали
- •1.4. Влияние температуры закалки на структуру и свойства стали
- •1.5. Влияние температуры отпуска на структуру и свойства стали
- •2. Порядок выполнения работы
- •3. Контрольные вопросы
- •4. Отчет по лабораторной работе №6 Микроструктура термически обработанных сталей
- •Библиографический список
- •Содержание
1.4. Структура и свойства железоуглеродистых сплавов
Техническое железо. Структура технического железа с концентрацией углерода 0,012 % (рис. 4.4) состоит из светлых полиэдрических зёрен феррита и цементита третичного, который расположен в виде светлых включений по границам зёрен феррита.
Феррит является пластичной и мягкой составляющей (800 НВ, δ = 40%). Цементит – твёрдый и хрупкий (8000 НВ, δ = 0%). Наличие на границах зёрен прожилок цементита третичного понижает пластичность и вязкость сплава.
Рис. 4.4. Технические (двухфазное) железо
Стали. В процессе охлаждения из аустенита доэвтектоидных сталей выделяется феррит (рис. 4.5а). Температура, при которой начинает выделяться феррит, определяется линией GS (см. рис. 4.1).
Выделение феррита приводит к обогащению аустенита углеродом. При 727 °С концентрация углерода в аустените достигает 0,8%, и в этих условиях имеет место эвтектоидная реакция
А0,8% → П0,8%(Ф+ Ц).
Таким образом, структура доэвтектоидных сталей при комнатной температуре состоит из феррита, выделившегося в интервале температур Аr3–Аr1 (линии GS и РS), и перлита, образовавшегося при 727 °С.
В структуре доэвтектоидной стали цементита много больше, чем в техническом железе, и это повышает твёрдость стали (рис. 4.2).
Сталь с содержанием углерода 0,8% имеет структуру перлита и называется эвтектоидной сталью. Перлит чаще всего имеет пластичное строение, при котором кристаллы цементита перемежаются с кристаллами феррита (рис. 4.5б). Увеличение содержания углерода повышает твердость, прочность, но снижает пластичность сплава.
Рис. 4.5. Структуры сталей: а – доэвтектоидная сталь, б – эвтектоидная сталь, в – заэвтектоидная сталь
Структура заэвтектоидной стали также формируется из аустенита. В интервале температур Аrст – Аr1 (линии SE и SK) из аустенита выделяется цементит вторичный, который, как правило, располагается по границам зёрен. При 727 °С концентрация углерода в аустените будет соответствовать 0,8%, он распадается с образованием перлита.
Таким образом, структура заэвтектоидной стали при комнатной температуре – перлит и цементит вторичный (рис. 4.5в). Доля цементитной составляющей возросла в сравнении с предыдущими сплавами. Теперь цементит не только входит в перлит (эвтектоид), но и твёрдость стали возрастает до 3000 НВ.
Чугуны. Белый эвтектический чугун кристаллизуется при 1147 °С (см. рис. 4.1, линия ЕСF) с образованием ледебурита:
Ж4,3% С → Л(А2,14% С + Ц6,67% C).
Охлаждение до 727 °С приводит к уменьшению концентрации углерода в аустените до 0,8 %. При 727 °С аустенит превращается в перлит.
Таким образом, эвтектический чугун (рис. 4.6б) при комнатной температуре имеет структуру ледебурита, состоящего из перлита и цементита. Основной фазой в белом чугуне является цементит, поэтому белый чугун твёрдый (6500 НВ).
Структура доэвтектических чугунов (рис. 4.6а) состоит из перлита, вторичного цементита и ледебурита, а заэвтектических чугунов (рис. 4.6в) – из ледебурита и цементита, выделившегося из жидкой фазы.
Рис. 4.6. Структуры белых чугунов: а – доэвтектический чугун, б – эвтектический чугун, в – заэвтектический чугун
Зависимость свойств серых чугунов от структуры значительно сложнее, чем у стали, так как серые чугуны состоят из металлической основы и графитовых включений. Поэтому для характеристики структуры серого чугуна необходимо определи размеры, форму, распределение графита, а также структуру металлической основы (рис. 4.7).
Рис. 4.7. Серый перлито-ферритный чугун
Чем меньше графитовых включений, тем они мельче и сильнее изолированы друг от друга, тем выше прочность чугуна при одной и той же металлической основе.
Рис. 4.8. Высокопрочный перлито-ферритный чугун
Металлическая основа серого чугуна СЧ 15 с содержанием углерода 3,1–3,6% (рис. 4.7) состоит из феррита (белая составляющая) и перлита (тёмная составляющая). Грубо- или среднепластинчатые графитовые включения в виде тёмных полос разрезают металлическую основу. Поэтому такой серый чугун имеет низкую прочность при работе на растяжение и практически нулевую пластичность: σВ = 150 МПа, δ = 0,5%. Твердость определяется строением металлической основы и соответствует 1630–2290 НВ.
Рис. 4.9. Ковкий ферритный чугун
Высокопрочный чугун в отличие от серого имеет включения графита шаровидной формы, а не пластинчатой. Такой чугун имеет более высокие механические свойств. Структура ВЧ 45 (рис. 4.8) с содержанием углерода 3,3–3,5% состоит из феррита (светлая составляющая), перлита (тёмная составляющая) и графита шаровидной формы (тёмные округлые включения) (рис. 4.8). Прочность при растяжении σВ = 450 МПа, относительное удлинение δ = 5%. Твёрдость определяется металлической основой и соответствует 1700–2070 НВ.
Ковкий чугун имеет графит хлопьевидной формы. Это обеспечивает хорошие механические свойства. Структура КЧ 35–10 с содержанием 2,4–2,8% С состоит из светлых зёрен феррита и хлопьевидного графита (рис. 4.9).
Ферритная металлическая основа обеспечивает невысокую твёрдость (1490–1630 НВ). Прочность чугуна σВ = 350 МПа, относительное удлинение δ = 10%.