Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
биохимия.doc
Скачиваний:
26
Добавлен:
29.03.2015
Размер:
218.62 Кб
Скачать

1900 Калорий, т.Е. Примерно 200 гр. С небольшим.

Конечно же, все приведенные здесь данные достаточно приблизительны и усреднены, и дают только общее представление о количестве хранящейся в нас энергии.

Теперь о самом главном.

Непосредственным источником энергии для мышечных волокон ВСЕГДА является аденозинтрифосфат (АТФ), но его, как уже писалось выше, настолько мало в мышцах, что хватает всего лишь на 1-3 секунды интенсивной работы! Поэтому, все преобразования жиров, углеводов и других энергоносителей в клетке сводятся к постоянному синтезу АТФ. Т.е. все эти вещества «горят» для создания молекул АТФ. В течение суток одна молекула АТФ проходит около 2000-3000 циклов расщепления и синтеза. По одним данным человеческий организм синтезирует около 40 кг АТФ в сутки, по другим – каждые 24 часа образуется и разрушается количество АТФ равное массе тела. Но данный момент не так важны сами цифры, сколько важно просто понимание того, что молекулы АТФ постоянно расходуются нашим организмом и постоянно синтезируются с помощью других веществ.

Вот смотрите, как все происходит:

Для получения энергии аденозинтрифосфат (АТФ) расщепляется на аденозиндифосфат (АДФ) и фосфат (Ф). При этом расщеплении выделяется энергия, которая и используется для сокращения мышечных волокон - для тех самых «гребков» миозиновых мостиков.

Условно этот процесс можно записать вот так:

АТФ -> АДФ + Ф + Энергия

Но полученной таким образом энергии хватает не надолго (1-3 сек), так как запасы АТФ очень малы, да и используется полученная энергия для выполнения работы лишь на одну треть, остальные две трети выделяются в виде тепла. Поэтому тут же запускаются механизмы обратного синтеза АТФ, т.е. возникающие в результате расщепления АТФ продукты АДФ и Ф соединяются снова:

АДФ + Ф + Энергия -> АТФ

Такая вот обратная реакция называется фосфорилированием. И, конечно же, для ее осуществления уже ТРЕБУЕТСЯ энергия. Вот для ее получения и задействуются другие вещества. Причем, в зависимости от того, участвует ли кислород в получение этой энергии, или же этот процесс обходится без него, и различают анаэробное (без участия кислорода) и аэробное (с участием кислорода) энергообразование.

АНАЭРОБНОЕ ЭНЕРГООБРАЗОВАНИЕ

Так вот, с помощью каких энергоносителей будет осуществляться восстановление АТФ, зависит от количества энергии требуемой в единицу времени.

При очень интенсивной мышечной работе, резко начинающей выполняться из состояния покоя, АТФ восстанавливается с помощью креатинфосфата (КФ) - вот и до него очередь дошла. В этом случае схема получения АТФ выглядит следующим образом:

КФ + АДФ -> Креатин (К) + АТФ

В данной ситуации креатинфосфат распадается на Креатин и Фосфат с высвобождением необходимой энергии, которая и задействуется при соединении образовавшегося фосфата (Ф) с аденодиндифосфатом (АДФ) для синтеза АТФ.

Для большего понимания можно попробовать записать вот так:

КФ+АДФ->К+Ф+энергия+АДФ ->К + АТФ.

Такой процесс достаточно энергоэффективен, так как выход энергии в результате таких преобразований примерно соответствует энергии получаемой от расщепления АТФ.

Но, креатинфосфата в мышце содержится всего лишь в 3-4 раза больше, чем самих запасов АТФ, так что и его хватает лишь на 7-12 секунд предельно интенсивной работы, ну, или же на 15-30 секунд просто интенсивного сокращения мышц. А дальше – всё - как говориться, бензин кончился, автобус дальше не идет. Особенно эта ситуация бывает заметна у бегунов на 100 м, когда метров через 80 после старта спринтер вдруг теряет скорость - его запасы фосфатов, богатых энергий, практически исчерпаны, и организм в такой ситуации просто вынужден переключаться на получение энергии из менее эффективного источника- гликогена.

Гликоген, содержащийся в мышце, в таких вот условиях будет расщепляться без участия кислорода на молочную кислоту- лактат. Точнее даже без участия кислорода гликоген расщепляется не полностью, а лишь до образования молочной кислоты. Само собой при таком расщеплении будет выделяться энергия необходимая для синтеза АТФ. Упрощенно наша формула будет выглядеть так:

Гликоген -> Лактат + АТФ

Ну, а более подробно вот так:

Гликоген -> Лактат (молочная кислота) + энергия + Ф+АДФ ->Лактат + АТФ.

Такая вот система носит название анаэробной лактатной системы или как еще ее называют анаэробная гликолитическая система.

Анаэробной она называется потому, что реакции проходят без участия кислорода, а лактатной - потому что образуется молочная кислота (лактат). О, чуть не забыл, а вот система получения энергии для синтеза АТФ с помощью креатинфосфата называется анаэробной алактатной. Алактатной - потому, что молочная кислота не образуется.

Но вот беда, при таком способе расщеплении гликогена, за одно и тоже время энергии получается в несколько раз меньше, чем при расщеплении креатинфосфата. Вот поэтому и приходится снижать интенсивность выполняемой работы, ибо для более быстрых и мощных движений энергии просто не хватает.

Анаэробное расщепление гликогена начинается практически с самого начала работы, ведь наш организм не знает заранее, какая нагрузка его ждет, поэтому и старается активизировать все свои энергетические системы практически одновременно, что бы не допустить перерывов в работе. На свою максимальную мощность анаэробная лактатная система выходит примерно через 15-20 секунд работы предельной интенсивности, т.е. когда заканчиваются запасы креатинфосфатов. Но действие и этой системы не может длиться долгое время, так что её хватает на 2 -3 минуты очень интенсивной работы. И тут дело не в том, что запасы гликогена заканчиваются, нет, его остается еще достаточно много для продолжения работы. Причина невозможности продолжать работу заданной интенсивности кроется в другом - в молочной кислоте. При продолжительных интенсивных нагрузках количество образуемой молочной кислоты превышает порог ее возможного усвоения и утилизации другими мышцами и буферными системами крови. Ну, а далее, упуская слишком умные термины и химические реакции, избыток молочной кислоты в конечном счете приводит к снижению скорости расщепления гликогена, что приводит к уменьшению количества синтезируемой АТФ и как следствие, к снижению работоспособности. В такой ситуации нам ничего не остается делать, как остановиться, что бы «перевести дыхание» и дождаться вывода из работающих мышц излишков молочной кислоты, или же еще снизить интенсивность выполняемой работы, что бы запустить следующую систему получения энергии.

6) Окислительное декарбоксилирование а-кетокислот в карбо-новые кислоты с уменьшенной на один атом цепью углеродных атомов осуществляется при участии системы ферментов. Через ряд каталитических превращений пировиноградная кислота, являющаяся одним из продуктов углеводного обмена ( в частности гликолиза), в виде продукта ее декарбоксилирования и дегидрирования - высоко макроэргического ацетил - КоА - вводится в цикл трикарбоновых кислот в звене превращений щавелевоуксусной кислоты в лимонную кислоту и в конечном счете окисляется в двуокись углерода и воду. Первичное расщепление пировиноградной кислоты с отделением двуокиси углерода осуществляет ТДФ. В последующих превращениях образовавшегося ацильного остатка окислительным агентом служит а-липоевая кислота, которая сама при этом подвергается восстановительному ацилированию при каталитическом действии пируватдегидрогеназы в 6-ацетилдигидролипоевую кислоту. Аминокислоты декарбоксилируют только а-кетокислоты. Триметилпировиноградная кислота не декарбоксилируется. Установлено, что а-кетокислоты, воз-никшие в процессе дезаминирования а-аминокислот, могут подвергаться в животных тканях д е к а р-боксилированию и одновременному окислению в жирную кислоту. Так же как а-кетокислоты, а, р-ненасыщенные кетоны не взаимодействуют с надкислотами, поскольку С С-связь в этом случае носит электрофильный, а не нуклеофильный характер. Тидрокси - и а-кетокислоты не расщепляются под действием Н1О4, но эта реакция идет с тетраацетатом свинца, На02 в щелочной среде и другими реагентами. Такие реакции представляют собой окислительное декарбоксилирование. Окисление пирувата до ацетил-КоА происходит при участии ряда ферментов и коферментов, объединенных структурно в мультиферментную систему, получившую название «пируватдегидрогеназный ком-плекс». На I стадии этого процесса пируват теряет свою карбоксильную группу в результате взаимодействия с тиа-минпирофосфатом (ТПФ) в составе активного центра фермента пируватдегидрогеназы (E1). На II стадии оксиэтильная группа комплекса E1–ТПФ–СНОН–СН3 окисляется с образованием ацетильной группы, которая одновременно переносится на амид липоевой кислоты (кофермент), связанной с ферментом дигидро-ли-поилацетилтрансферазой (Е2). Этот фермент катализирует III стадию – перенос ацетильной группы на коэнзим КоА (HS-KoA) с образованием конечного продукта ацетил-КоА, который является высокоэнергетическим (макроэргическим) соединением. На IV стадии регенерируется окисленная форма липоамида из восста-новленного комплекса дигидролипоамид–Е2. При участии фер-мента дигидролипоилдегидрогеназы (Е3) осуществляется перенос атомов водорода от восстановленных сульфгидрильных групп дигидролипоамида на ФАД, который выполняет роль простетиче-ской группы данного фермента и прочно с ним связан. На V стадии восстановленный ФАДН2 дигидро-липоилдегидрогеназы передает водород на кофермент НАД с образованием НАДН + Н+. Процесс окислительного декарбоксилирования пирувата происходит в матриксе митохондрий. В нем принимают участие (в составе сложного мультиферментного комплекса) 3 фермента (пируватдегидрогеназа, ди-гидролипоилацетилтрансфераза, дигидролипоилдегидрогеназа) и 5 кофер-ментов (ТПФ, амид липоевой кислоты, коэнзим А, ФАД и НАД), из которых три относительно прочно связаны с ферментами (ТПФ-E1, ли-по-амид-Е2 и ФАД-Е3), а два – легко диссоциируют (HS-KoA и НАД).

Рис. Механизм действия пируватдегидрогеназного комплек-са. Е1 - пируватдегидрогеназа; Е2 - ди-гидролипоил-ацетилтрансфсраза; Е3 -дигидролипоилдегидрогеназа; цифры в кружках обозначают стадии процесса. Суммарную реакцию, катализируемую пируватдегидрогеназным комплексом, можно представить следующим образом: Пируват + НАД+ + HS-KoA –> Ацетил-КоА + НАДН + Н+ + СO2. Образовавшийся в процессе окислительного декарбоксилирования аце-тил-КоА подвергается дальнейшему окислению с образованием СО2 и Н2О. Полное окисление ацетил-КоА происходит в цикле трикарбоновых кислот (цикл Кребса). Этот процесс, так же как окислительное декарбо-ксилирование пирувата, происходит в митохондриях клеток. - Витамины играют важную роль в пищевом рационе че