
- •Пермский Государственный Технический Университет
- •Механика электромеханической системы Кинематическая схема эл.Привода. Силы и моменты, действующие в системе эл.Привода.
- •Механические характеристики производственных механизмов. Для теории и практики эл.Привода большое значение имеют понятия механической характеристики рабочей машины.
- •Расчетные схемы выглядят так:
- •Уравнение движения и режимы работы эл.Привода как динамической системы.
- •Передаточные функции, структурные схемы и частотные характеристики механической части электропривода как объекта управления.
- •Движение инерционных масс эл.Привода с учетом упругих связей движущихся масс.
- •Динамические нагрузки эл.Приводов.
- •В уравнении жесткого приведенного механического звена величина
- •Определение наивыгоднейшего передаточного отношения.
- •Математическое описание процессов электромеханического преобразования энергии.
- •Понятие о электромеханических и механических характеристиках электродвигателей, их жесткости и режимы работы эмп.
- •Координатные преобразования переменных обобщенной электрической машины.
- •Выбор скорости к координатных осей u,V.
- •Фазные преобразования переменных обобщенной машины.
- •Электромеханические свойства двигателей. Математическое описание процессов преобразования энергии в двигателе постоянного тока независимого возбуждения.
- •Естественные и искусственные эл.Механические и механические характеристики двигателя независимого возбуждения в именованных и относительных единицах.
- •Реверсирование двигателя независимого возбуждения и механические характеристики для прямого и обратного напрявления вращения.
- •Тормозные режимы двигателя независимого и параллельного возбуждения.
- •Генераторное торможение с рекуперацией (отдачей) энергии в сеть.
- •Торможение противовключением.
- •Электродинамическое торможение.
- •Расчет механических характеристик двигателя независимого возбуждения.
- •Расчет сопротивлений для якорной цепи днв.
- •Динамические свойства днв при питании от источника напряжения.
- •Математическое описание процессов электромеханического преобразования энергии в двигателе постоянного тока последовательного возбуждения (дпв)
- •Естественные и искусственные электромеханические и механические характеристики дпв
- •Тормозные режимы дпв
- •Расчет искусственных электромеханических и механических характеристик дпв.
- •Расчет пусковых сопротивлений для дпв.
- •Механические характеристики двигателя смешанного возбуждения (дсв) и его тормозные режимы.
- •Расчет тормозных сопротивлений для двигателей постоянного тока.
- •Математическое описание процессов преобразования энергии в асинхронном двигателе.
- •Естественные механическая и эл.Механическая характеристика ад. Формула Клосса.
- •Искусственные механические характеристики ад при изменении параметров цепей статора, ротора и питающей сети.
- •3. Введение добавочного активного сопротивления в цепь ротора.
- •4. Изменение частоты питающей сети.
- •Тормозные режимы асинхронного двигателя.
- •2) Торможение с самовозбуждением
- •Расчет естественной и искусственных статистических механических характеристик ад
- •Расчет сопротивлений для роторной цепи ад.
- •Динамические свойства асинхронного эмп при питании от источника напряжения
- •Математическое описание и электромеханические свойства синхронного двигателя
- •Обобщенная эл.Механическая система эл.Привода с линейной (линеаризованной) механической характеристикой двигателя.
- •Статический (установившийся) режим работы электропривода и статическая устойчивость электропривода
- •Переходные режимы электроприводов Общая характеристика переходных процессов электроприводов, их классификация и методы расчета
- •Графический метод интегрирования уравнения движения (метод пропорций)
- •Графоаналитический метод интегрирования уравнения движения (метод последовательных интервалов)
- •Электромагнитные переходные процессы в цепях возбуждения и форсирование процессов возбуждения
- •Переходный процесс электропривода с двигателем независимого возбуждения при изменении магнитного потока
- •Переходные процессы при пуске и торможении электропривода с короткозамкнутым асинхронным двигателем (ад)
- •Характер изменения свободных составляющих и их затухание определяются корнями p1 и p2характеристического уравнения
- •Корень определяет установившийся режим т.К. Относится к изображению напряжения. Если учесть, что , топоэтому
- •Регулирование координат электропривода Требования к координатам электропривода и формированию его статических и динамических характеристик
- •Основные показатели способов регулирования координат электропривода
- •Системы управляемый преобразователь – двигатель (уп – д).
- •Система генератор – двигатель (гд).
- •Расчет статических электромеханических и механических характеристик в системе гд
- •Система тиристорный преобразователь – двигатель (тп – д).
- •Торможение и реверсирование двигателя в системе тп-д и статические механические характеристики реверсивного вентильного электропривода
- •Расчет статических механических характеристик в системе тп-д
- •Коэффициент мощности и основные технико-экономические показатели вентильного электропривода
- •Частотное управление асинхронными двигателями
- •Законы частотного регулирования
- •Статические механические характеристики ад при частотном управлении.
- •Система пч-ад (преобразователь частоты - асинхронный двигатель)
- •Обобщенная линеаризованная система уп-д
- •Регулирование момента (тока) электропривода Задачи регулирования момента (тока) электропривода
- •Реостатное регулирование момента (тока) двигателей
- •Релейное автоматическое регулирование тока и момента ад изменением импульсным методом сопротивления в цепи выпрямленного тока ротора
Расчетные схемы выглядят так:
Одномассовая
или жесткое механическое звено
двухмассовая
трехмассовая
Здесь J1,J2,J3 – суммарные приведенные моменты инерции, образованные приведенными массами, связи между которыми приняты жесткими. С12 и С23 – приведенные жесткости упругих связей между J1 и J2, J2 и J3.
Инерционная масса J1 включает в себя момент инерции ротора (якоря) двигателя и других элементов, жестко связанных с ним. К этой массе приложен электромагнитный момент М двигателя и момент статической нагрузки Мс1, который обычно является суммарным моментом потерь на валу двигателя и жестко с ним связанных элементах. Инерционная масса J2 является в трехмассовой расчетной схеме промежуточной массой. К ней приложен момент сопротивления Мс2. Инерционная масса J3 в этой схеме представляет суммарный приведенный момент инерции элементов, жестко связанных с рабочим органом механизма. К ней приложен момент внешней нагрузки этой массы Мс3.
В двухмассовой расчетной схеме J1 – это суммарный приведенный момент инерции ротора (якоря) двигателя и других элементов, жестко связанных с двигателем, а J2 суммарный приведенный момент инерции элементов, жестко связанных с рабочим органом механизма. Упругая связь между J1 и J2 характеризуется эквивалентной жесткостью С12. Суммарные моменты сопротивления на валу двигателя и механизма – Мс1 и Мс2.
Обычно 3-х массовая расчетная схема используется для детального анализа условий движения механизма. Для исследования отдельных физических особенностей 3-х массовая расчетная схема сводится к 2-х массовой. Электромеханическая система с 2-х массовой упругой механической частью представляет собой простейшую модель электропривода, наиболее удобную для изучения влияния упругих связей.
В
тех случаях, когда влияние упругих
связей незначительно или при решении
задачи ими можно пренебречь, механическая
часть электропривода представляется
простейшей расчетной схемой (см. рис.)
– жестким приведенным механическим
звеном, т.е. многомассовая механическая
часть эл.привода с моментами инерциями
J1
,J2 и т.д.
заменяется действием одного момента
инерции Jnp,
приведенного к расчетной скорости.
Суммарный приведенный момент инерции
эл.привода в этом случае определяется
как
,
где
J – момент инерции двигателя; n, k – число элементов установки, совершающих соответственно вращательное и поступательное движение.
Суммарные
приведенный к валу двигателя момент
статического сопротивления в общем
виде можно представить как:,
где
p,q – число внешних моментов Мi и сил Fj, приложенных к системе кроме электромагнитного момента двигателя.
Кинематические схемы многодвигательных эл.приводов приводят к разветвленным расчетным схемам.
Приведенные выше формулы для определения приведенных Mc, Fc не учитывают КПД отдельных передач или механизма в целом.
С
учетом КПД механизма;
При
наличии между двигателем и механизмом
нескольких передач с передаточными
отношениями
j1,j2
и т.д.
При
передачи энергии от рабочего органа
механизма к двигателю (в случае активного
момента сопротивления):
;
;