
- •Основные определения и понятия предмета технические средства.
- •Классификация элементов систем автоматики
- •1. Состав систем автоматики
- •2. Физические основы работы электромеханических и магнитных элементов
- •3. Статические характеристики
- •4. Динамические характеристики
- •5. Обратная связь в системах автоматики
- •6. Надежность элементов систем автоматики
- •1. Электрические измерения неэлектрических величин
- •2. Мостовая измерительная схема постоянного тока
- •3. Чувствительность мостовой схемы
- •4. Мостовая схема переменного тока
- •5. Дифференциальные измерительные схемы
- •6. Компенсационные измерительные схемы
- •7. Первичные преобразователи с неэлектрическим выходным сигналом
- •1. Типы электрических датчиков
- •2. Контактные датчики с дискретным выходным сигналом
- •1. Назначение. Принцип действия
- •2. Конструкции датчиков
- •3. Характеристики линейного потенциометрического датчика
- •4. Реверсивные потенциометрические датчики
- •5. Функциональные потенциометрические датчики
- •1. Назначение. Типы тензодатчиков
- •2. Принцип действия проволочных тензодатчиков
- •3. Устройство и установка проволочных тензодатчиков
- •4. Фольговые, пленочные, угольные и полупроводниковые тензодатчики
- •5. Методика расчета мостовой схемы с тензодатчиками
- •1. Назначение. Типы электромагнитных датчиков
- •2. Принцип действия и основы расчета индуктивных датчиков
- •3. Дифференциальные (реверсивные) индуктивные датчики
- •4. Трансформаторные датчики
- •5. Магнитоупругие датчики
- •6. Индукционные датчики
- •1. Принцип действия
- •2. Устройство пьезодатчиков
- •3. Чувствительность пьезодатчика и требования к измерительной цепи
- •1. Принцип действия. Типы емкостных датчиков
- •2. Характеристики и схемы включения емкостных датчиков
- •1. Назначение. Типы терморезисторов
- •2. Металлические терморезисторы
- •3. Полупроводниковые терморезисторы
- •4. Собственный нагрев термисторов
- •5. Применение терморезисторов
- •1. Принцип действия
- •2. Материалы, применяемые для термопар
- •3. Измерение температуры с помощью термопар
- •1. Назначение и принцип действия
- •2. Устройство струнных датчиков
- •1. Назначение. Типы фотоэлектрических датчиков
- •2. Приемники излучения фотоэлектрических датчиков
- •3. Применение фотоэлектрических датчиков
- •1. Принцип действия и назначение
- •2. Излучатели ультразвуковых колебаний
- •3. Применение ультразвуковых датчиков
- •1. Физические основы эффекта Холла и эффекта магнитосопротивления
- •2. Материалы для датчиков Холла и датчиков магнитосопротивления
- •3. Применение датчиков Холла и датчиков магнитосопротивления
- •Коммутационные и электромеханические элементы
- •1. Назначение. Основные понятия
- •2. Кнопки управления и тумблеры
- •3. Пакетные переключатели
- •4. Путевые и конечные выключатели
- •1. Режим работы контактов
- •2. Конструктивные типы контактов
- •3. Материалы контактов
- •1. Назначение. Принцип действия
- •2. Основные параметры и типы электромагнитных реле
- •3. Электромагнитные реле постоянного тока
- •4. Последовательность работы электромагнитного реле
- •5. Тяговая и механическая характеристики электромагнитного реле
- •6. Основы расчета магнитопровода электромагнитного реле
- •7. Основы расчета обмотки реле
- •8. Электромагнитные реле переменного тока
- •9. Быстродействие электромагнитных реле
- •1. Назначение. Принцип действия
- •2. Магнитные цепи поляризованных реле
- •3. Настройка контактов и устройство поляризованного реле
- •4. Вибропреобразователи
- •1. Типы специальных реле
- •2. Магнитоэлектрические реле
- •3. Электродинамические реле
- •4. Индукционные реле
- •5. Реле времени
- •7. Шаговые искатели и распределители
- •8. Магнитоуправляемые контакты. Типы и устройство
- •9. Применение магнитоуправляемых контактов
- •Применение увк для построения систем управления современная концепцияавтоматизированных систем управления производством
- •Мировые тенденции развития микропроцессорных птк
- •Локальные промышленные сети
- •Обзор промышленных сетей
- •1. Modbus
- •2. World-fip
- •1. Циклический трафик.
- •2. Периодический трафик.
- •3. Обслуживание сообщений.
- •3. Canbus
- •4. LonWorks
- •5. Hart
- •7. Bitbus
- •8. Profibus
- •Общее заключение
- •Принципы построения увк
- •Современные управляющие вычислительные комплексы
- •1. Классификация исполнительных устройств
- •2. Пневматические исполнительные механизмы
- •3. Гидравлические исполнительные механизмы
- •4. Электрические исполнительные механизмы с контактным управлением электродвигателем
- •5. Регулирующие органы
1. Назначение. Типы терморезисторов
Терморезисторы относятся к параметрическим датчикам температуры, поскольку их активное сопротивление зависит от температуры. Терморезисторы называют также термометрами сопротивления или термосопротивлениями. Они применяются для измерения температуры в широком диапазоне от -270 до 1600 °С.
Если терморезистор нагревать проходящим через него электрическим током, то его температура будет зависеть от интенсивности теплообмена с окружающей средой. Так как интенсивность теплообмена зависит от физических свойств газовой или жидкой среды (например, от теплопроводности, плотности, вязкости), в которой находится терморезистор, от скорости перемещения терморезистора относительно газовой или жидкой среды, то терморезисторы используются и в приборах для измерения таких неэлектрических величин, как скорость, расход, плотность и др.
Различают металлические и полупроводниковые терморезисторы. Металлические терморезисторы изготовляют из чистых металлов: меди, платины, никеля, железа, реже из молибдена и вольфрама. Для большинства чистых металлов температурный коэффициент электрического сопротивления составляет примерно (4—6,5) 10-3 1/°С, т. е. при увеличении температуры на 1 °С сопротивление металлического терморезистора увеличивается на 0,4—0,65 %. Наибольшее распространение получили медные и платиновые терморезисторы. Хотя железные и никелевые терморезисторы имеют примерно в полтора раза больший температурный коэффициент сопротивления, чем медные и платиновые, однако применяются они реже. Дело в том, что железо и никель сильно окисляются и при этом меняют свои характеристики. Вообще добавление в металл незначительного количества примесей уменьшает температурный коэффициент сопротивления. Сплавы металлов и окисляющиеся металлы имеют низкую стабильность характеристик. Однако при необходимости измерять высокие температуры приходится применять такие жаропрочные металлы, как вольфрам и молибден, хотя терморезисторы из них имеют характеристики, несколько отличающиеся от образца к образцу.
Широкое применение в автоматике получили полупроводниковые терморезисторы, которые для краткости называют термисторами. Материалом для их изготовления служат смеси оксидов марганца, никеля и кобальта; германий и кремний с различными примесями и др.
По сравнению с металлическими терморезисторами полупроводниковые имеют меньшие размеры в большие значения номинальных сопротивлений. Термисторы имеют на порядок больший температурный коэффициент сопротивления (до -6 10-2 1/ºС). Но этот коэффициент — отрицательный, т. е. при увеличении температуры сопротивление термистора уменьшается. Существенный недостаток полупроводниковых терморезисторов по сравнению с металлическими — непостоянство температурного коэффициента сопротивления. С ростом температуры он сильно падает, т. е. термистор имеет нелинейную характеристику. При массовом производстве термисторы дешевле металлических терморезисторов, но имеют больший разброс характеристик.
2. Металлические терморезисторы
Сопротивление металлического проводника R зависит от температуры:
(1)
где С — постоянный коэффициент, зависящий от материала и конструктивных размеров проводника; α — температурный коэффициент сопротивления; е — основание натуральных логарифмов.
Абсолютная температура (К) связана с температурой в градусах Цельсия соотношением Т К= 273 + Т°С.
Определим
относительное изменение сопротивления
проводника при его нагреве. Пусть сначала
проводник находился при начальной
температуре Т0
и
имел сопротивление
.
При нагреве до температурыT
его сопротивление
.
Возьмем отношение RT
и R0:
(2)
Известно, что функцию вида ex можно разложить в степенной ряд:
Для
нашего случая
.
Так как величина α для меди сравнительно
мала и в диапазоне температур до +150 °С
может быть принята постоянной α = 4,3 10-3
1/ºС, то и произведение
в этом диапазоне температур меньше
единицы. Поэтому не будет большой ошибкой
пренебречь при разложении членами ряда
второй степени и выше:
(3)
Выразим сопротивление при температуре T через начальное сопротивление при T0
(4)
Медные терморезисторы выпускаются серийно и обозначаются ТСМ (термосопротивления медные) с соответствующей градуировкой: гр. 23 имеет сопротивление 53,00 Ом при 0 ºC; гр. 24 имеет сопротивление 100,00 Ом при 0 ºC. Медные терморезисторы выполняются из проволоки диаметром не менее 0,1 мм, покрытой для изоляции эмалью.
Для платиновых терморезисторов, которые применяются в более широком диапазоне температур, чем медные, следует учитывать зависимость температурного коэффициента сопротивления от температуры. Для этого берется не два, а три члена разложения в степенной ряд функции ex.
В диапазоне температур от -50 до 700 °С достаточно точной является формула
(5)
где для платины α = 3,94 10-3 1/ºС, β = 5,8 10-7 (1/ºС)2.
Платиновые терморезисторы выпускаются серийно и обозначаются ТСП (термосопротивления платиновые) с соответствующей градуировкой; гр. 20 имеет сопротивление 10,00 Ом при 0 °С, гр. 21 — 46,00 Ом; гр. 22 — 100,00 Ом. Платина применяется в виде неизолированной проволоки диаметром 0,05—0,07 мм.
В табл. 1 приведены зависимости сопротивления металлических терморезисторов от температуры; они называются стандартными градуировочными таблицами.
Таблица 1. Зависимость сопротивления терморезисторов от температуры
Температура, °С |
Сопротивление, Ом | ||||
Платиновые термометры сопротивления |
Медные термометры сопротивления | ||||
|
гр. 20 |
гр. 21 |
гр. 22 |
гр. 23 |
гр. 24 |
-200 |
1,73 |
7,95 |
17,28 |
- |
- |
-150 |
3,88 |
17,85 |
38,80 |
- |
- |
-100 |
5,97 |
27,44 |
59,65 |
- |
- |
-50 |
8,00 |
36,80 |
80,00 |
41,71 |
78,70 |
-30 |
8,80 |
40,50 |
88,04 |
46,23 |
87,22 |
-10 |
9,60 |
44,17 |
96,03 |
50,74 |
95,74 |
0 |
10,00 |
46,00 |
100,00 |
53,00 |
100,00 |
20 |
10,79 |
46,94 |
107,91 |
57,52 |
108,52 |
40 |
11,58 |
53,26 |
115,78 |
62,03 |
117,04 |
60 |
12,36 |
56,86 |
123,60 |
66,55 |
125,56 |
80 |
13,14 |
60,43 |
131,37 |
71,06 |
1 34,08 |
100 |
13,91 |
63,99 |
139,10 |
75,58 |
142,60 |
120 |
14,68 |
67,52 |
146,78 |
80,09 |
151,12 |
140 |
15,44 |
71,03 |
154,41 |
84,61 |
159,64 |
160 |
16,20 |
74,52 |
162,00 |
89,13 |
168,16 |
180 |
16,95 |
77,99 |
169,54 |
93,64 |
176,68 |
300 |
21,38 |
98,34 |
213,79 |
- |
- |
400 |
24,94 |
114,72 |
249,38 |
- |
- |
500 |
28,38 |
130,55 |
283,80 |
- |
- |
600 |
21,70 |
145,85 |
317,06 |
- |
- |
650 |
33,33 |
153,30 |
333,25 |
- |
- |
На рис. 1 показано устройство платинового термометра сопротивления. Сам терморезистор выполнен из платиновой проволоки 1, намотанной на слюдяную пластину 2 с нарезкой. Слюдяные накладки 3 защищают обмотку и крепятся серебряной лентой 4. Серебряные выводы 5 пропущены через фарфоровые изоляторы 6. Термосопротивление помещается в металлический защитный чехол 7.
Рис.
1. Платиновый термометр сопротивления