Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
М у по полупроводникам.doc
Скачиваний:
17
Добавлен:
27.03.2015
Размер:
1.58 Mб
Скачать

Цель работы

Исследование электропроводящих свойств полупроводниковых устройств на основе германия и кремния в зависимости от температуры окружающей среды и напряжения.

Краткие сведения из теории

ЭЛЕКТРОПРОВОДИМОСТЬ ПОЛУПРОВОДНИКОВ

Собственная проводимость полупроводников

Такая проводимость может быть рассмотрена на примере кремния, который является элементом IV группы Периодической системы химических элементов Д. И Менделеева. Эти элементы образуют алмазоподобную модификацию гранецентрированной кубической решетки, в которой каждый атом, распо­ложенный в узле кристаллической решетки, окружен четырьмя дру­гими атомами и связан с ними ковалентной связью. Все электроны внешних оболочек уча­ствуют в образовании ковалентных связей и свободные носители, создающие электропроводность, отсутствуют (рис. 2, а) Для того чтобы электрон превратился в свободный носитель заряда, необходимо сообщить ему дополнительную энергию, достаточную для разрыва ковалентной связи (рис. 2,б). Такая энергия определяется шириной запретной зоны и называется энергией активации (рис. 2, в).

Рис. 2. Собственный полупроводник:

а – модель кристаллической решетки кремния без воздействия на него электрического поля; б – модель кристаллической решетки кремния при помещении его в электрическое поле; в - зонная диаграмма активизированного полупроводника

При разрыве ковалентной связи освободившийся электрон под действием тепловой энергии хаотически движется по объему полу­проводника. На месте оторвавшегося электрона остается положи­тельно заряженная незаполненная связь с зарядом, который равен заряду электрона, называемая дыркой. При отсутствии внешнего электрического поля дырка, как и электрон, совершает хаотические движения.

При этом сама дырка, в отличие от электрона, не перемещается по кристаллу. Ее движение связано с тем, что за счет энергии тепловых колебаний решетки электрон соседней ковалентной связи может пополнить свободную ковалентную связь в атоме с дыркой. В резуль­тате этого атом, у которого за­полняются все связи, становится нейтральным, а в атоме, потеряв­шем электрон, образуется дырка (рис. 2, б). Таким образом, со­здается впечатление движения дырок.

Проводимость полупроводника, которая возникает в результате разрыва собственных ковалентных связей, называется собственной.

Собственная электропроводность полупроводника складыва­ется из электронной электропроводностии дырочной электро­проводности:

.

Примесная проводимость полупроводников

Примесная проводимость обусловлена несовер­шенством кристаллической структуры полупроводника. Дефекты в кристаллической решетке вызывают образование дополнительных энергетических уровней внутри запретной зоны (рис. 3,б, рис. 4,б). Благодаря этому для перехода электрона с дополнительного уровня в зону про­водимости или из валентной зоны на дополнительный уровень требу­ется энергия, меньше ширины запретной зоны W. В случае перехода электрона с дополнительного энергетического уровня в зону прово­димости появляется дополнительный электрон проводимости. При переходе электрона с валентной зоны на дополнительный энергети­ческий уровень образуется дополнительная дырка проводимости.

1) Электропроводимость полупроводников n-типа

Если в кристаллической решетке кремния находится атом при­меси, который представляет собой элемент V группы Периодичес­кой системы химических элементов Д. И. Менделеева, например фос­фор (рис. 3.а), то четыре из пяти валентных электронов фосфора будут участвовать в формировании ковалентных связей с соседни­ми атомами основного элемента кремния. Пятый валентный элект­рон фосфора связан только со своим атомом, и прочность этой свя­зи много меньше прочности ковалентной связи. Для перехода это­го электрона на дополнительный энергетический уровень (рис. 3,б) требуется энергия, много меньше энергии ширины запрет­ной зоны W. Оторвавшийся от атома фосфора пятый электрон превращается в электрон проводимости. На месте оторвавшегося электрона образуется дырка. Она остает­ся неподвижной, дырочная прово­димость в таком полупроводнике отсутствует и его проводимость носит электронный характер.

Полупроводники с преобладанием электронной электропровод­ности называют электронными или n-типа.

Рис. 3. Донорный полупроводник:

а – модель кристаллической решетки; б - зонная диаграмма

2) Электропроводимость полупроводников р-типа

Если в кристаллической решетке кремния находится атом примеси, который представляет собой элемент III группы таблицы Д. И. Мен­делеева, например бора, то все три валентных электрона бора уча­ствуют в образовании ковалентных связей с кремнием. А одна связь кремния остается незаполненной. Эту связь можно заполнить электроном соседнего атома кремния, образовав четвертую ковалентную связь с примесным атомом бора (рис. 4,а). Для этого электрон должен полу­чить энергию, значительно меньшую, чем энергия запретной зоны (рис. 4, б).

Рис. 4. Акцепторный полупроводник:

а – модель кристаллической решетки; б - зонная диаграмма

Приняв дополнительный электрон, атом бора ионизируется и ста­новится отрицательным ионом. При этом одна из четырех связей соседнего атома кремния остается незавершенной, т.е. образуется дырка. В результате тепловых колебаний решетки эта незавершен­ная связь может быть заполнена электроном соседнего атома, обра­зуя новую дырку. Таким образом, в результате исчезновения одних дырок и образования новых происходит хаотичное движение дырок в пределах кристалла, которые являются носителями заряда. Поэто­му электропроводность полупроводника носит дырочный характер.

Полупроводники с преобладанием дырочной электропроводно­сти называют дырочными или р-типа.

Введение примесей в полупроводник приводит к появлению при­месной электропроводности, возникающей в результате ионизации атомов примесей. В отличие от собственной примесная электропро­водность образуется благодаря наличию носителей заряда только одного знака (электронов в полупроводниках n-типа и дырок в по­лупроводниках p-типа).

Возможность управлять значением и типом электропроводнос­ти полупроводников в результате введения примесей лежит в осно­ве создания всех полупроводниковых приборов.

ПРОСТЫЕ ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ

Германий

В земной коре содержание германия невелико и составляет при­мерно 0,001%. Германий почти не имеет своих руд. Единственная руда германид содержит меди, железа и цинка гораздо больше, чем германия. В ничтожных количествах (0,01...0,5%) германий содер­жится в цинковых рудах, угольной пыли, золе, саже и морской воде. Он рассеян в силикатах, сульфидных минералах, а также в минера­лах, представляющих собой сульфасоли. Большое количество германия (до 100 г/т) содержат бурые сорта угля.

Получают германий в результате сложного технологического процесса из продуктов сгорания бурого угля. Окончательным про­дуктом этого процесса является монокристаллический германий в виде слитков.

Кристаллический германий – твердый, хрупкий материал с характерным металлическим блеском. Кристаллизуется в виде кубической решетки типа алмаза. Ширина запретной зоны при комнатной температуре =0.75 эВ, при температуре 300К=0.67эВ. Рабочая температура полупроводниковых приборов на основе германия не превышает 80С. Концентрация собственных носителей заряда ni=2.51019 м-3. Собственное удельное электрическое сопротивление =0.68 Омм. Электропроводимость германия зависит от температуры. При низких температурах (Т<5.4 К) и высоких давлениях (Р>11 ГПа) германий переходит в сверхпроводящее состояние.

При плавлении удельная проводимость германия возрастает скачком примерно в 13 раз. При дальнейшем нагреве удельная проводимость сначала почти не изменяется, а начиная с температуры 1100° С — падает. В момент плавления германия происходит увеличение его плотности на 5—6%.

Для производства полупроводниковых приборов используют германий электронного и дырочного типов с определенным удель­ным электрическим сопротивлением . Тип проводимости и удель­ное электрическое сопротивление германия определяется количе­ством введенных в исходный материал примесей. Монокристалли­ческий германий различных марок, легированный сурьмой, мышь­яком, галлием и золотом, обладает удельным электрическим сопро­тивлениемот 0,0004 до 45 Омм. Легирующие примеси вводят в определенных количествах в рабочий объем расплавленного поли­кристаллического германия перед выращиванием монокристаллов.

Германий легируют нейтральными, донорными, акцепторными и создающими глубокие энергетические уровни примесями.

Нейтральные примеси не меняют тип электропроводности по­лупроводникового материала и количество носителей заряда в нем. К нейтральным примесям германия относят инертные газы, азот и аргон и элементы IV группы Периодической системы химических элементов Д. И. Менделеева: кремний, свинец, олово.

Основными акцепторными примесями в германии являются эле­менты III группы Периодической системы химических элементов Д. И. Менделеева: галлий, индий, алюминий.

Донорные уровни в германии создают элементы V группы Пе­риодической системы химических элементов Д.И.Менделеева: мы­шьяк, сурьма, висмут, фосфор, а также элемент I группы - литий.

Глубокие энергетические уровни в запретной зоне германия об­разуют многие элементы I, II, VI, VII и VIII групп Периодичес­кой системы химических элементов Д.И. Менделеева. Однако ра­створимость этих элементов, как правило, значительно меньше ра­створимости акцепторов и доноров.

Германий применяется для изготовления выпрямителей переменного тока различной мощности, транзисторов разных типов. Из него изготовляются преобразователи Холла и другие, применяемые для измерения напряженности магнитного поля, токов и мощности, умножения двух величин в приборах вычислительной техники и т.д. Оптические свойства германия позволяют использовать его для фототранзисторов и фоторезисторов, оптических линз с большой светосилой (для инфракрасных лучей), оптических фильтров.

Рабочий диапазон температур германиевых приборов от -60 до +70 °С, при повышении температуры до верхнего предела прямой ток, например у диодов, увеличивается почти в два раза, а обратный - в три раза. При охлаждении до - (50 - 60)° С прямой ток падает на 70 - 75%. Германиевые приборы должны быть защищены от действия влажности воздуха.

Использование монокристаллических слитков германия в тех­нологии изготовления полупроводниковых приборов и интеграль­ных микросхем связано с большими потерями материала при меха­нической обработке (резке слитков на пластины, шлифовке и поли­ровке пластин). Поэтому широко применяют эпитаксиальные плен­ки германия, которые получают осаждением монокристалического германия в виде монокристаллических пленок на подложки из различных материалов (германий, кремний, кварц, сапфир).

Кремний

Кремний является элементом IV группы Периодической систе­мы химических элементов Д.И.Менделеева. После кислорода это самый распространенный элемент в земной коре. Он составляет при­мерно 1/4 массы земной коры. Однако в свободном состоянии в природе он не встречается. Его соединениями являются такие рас­пространенные природные материалы, как кремнезем и силикаты. Песок и глина, образующие минеральную часть почвы, также пред­ставляют собой соединения кремния.

Из соединении кремний получают несколькими способами. Чаще всего используют метод восстановления четыреххлористого крем­ния SiCl4 парами цинка или водорода.

В технологическом отношении кремний более сложный матери­ал, чем германий, так как он имеет высокую температуру плавле­ния 1414°С и в расплавленном состоянии химически активен (всту­пает в реакцию со всеми материалами, из которых изготавливают тигли).

Кристаллический кремний - темно-серое твердое и хрупкое ве­щество с металлическим блеском, химически довольно инертное.

Основной параметр полупроводниковых приборов - ширина запретной зоны при температуре 20°С W=1,12 эВ. Это позволяет создавать кремниевые полупроводниковые приборы с относитель­но высокой рабочей температурой (до 125°С). Верхний темпера­турный предел работы кремниевых приборов достигает 200 °С.

Концентрация собственных носителей зарядов при комнатной температуре ni= 31016 м-3. Удельное электрическое сопротивление кремния с собственной электропроводностью= 2,3103 Ом-м, резко уменьшается при увеличении концентрации примесей. При низких температурах (Т<6,7 К) и высоких давлениях (Р>12 ГПа) кремний переходит в сверхпроводящее состояние, т.е. удельное элек­трическое сопротивление кремния уменьшается до нуля.

При использовании монокристаллического кремния в полупро­водниковом производстве имеют место большие потери этого ма­териала. Это связано с тем, что большинство полупроводниковых приборов основано на процессах, происходящих в очень узких гра­ничных или поверхностных слоях полупроводника. Остальной объем монокристалла является паразитной частью и чаще всего ухудшает параметры прибора. Большая часть материала теряется при механической обработке слитков (резке на пластины, шлифов­ке, полировке и т.д.).

С целью уменьшения этих потерь в полупроводниковом произ­водстве применяют кремний в виде монокристаллических тонких слоев, которые осаждают на объемные монокристаллы, которые на­зывают подложками.

Такие монокристаллические слои, сохраняющие кристаллогра­фическую ориентацию подложки, называют эпитаксиалъными. В ка­честве подложек используют монокристаллы кремния, сапфира, ко­рунд и др.

В зависимости от характера влияния на тип электропроводности примеси делят на нейтральные, донорные, акцепторные и создающие в запретной зоне кремния глубокие энергетические уровни.

К нейтральным примесям кремния относят водород, азот, инерт­ные газы, а также элементы IV группы Периодической системы хи­мических элементов Д.И.Менделеева (германий, олово, свинец).

Основными донорными примесями являются элементы V группы Периодической системы химических элементов Д.И.Мен­делеева (фосфор, мышьяк, сурьма, висмут).

В качестве акцепторной примеси для кремния в основном используют элементы III группы Периодической системы химичес­ких элементов Д.И.Менделеева (бор, алюминий).

Элементы I,II,VI,VII гpyпп создают в запретной зоне кремния глубокие энергетические уровни и могут быть донорами и акцепторами. В качестве таких примесей чаще всего применяют золото и цинк. При легировании золотом в крем­нии образуются дополнительные центры рекомбинации носителей заряда, что уменьшает время жизни неравновесных носителей за­ряда.

Легирование кремния производят в процессе получения объем­ных монокристаллов и эпитаксиальных пленок.

ЭЛЕКТРОННО-ДЫРОЧНЫЙ ПЕРЕХОД

Область на границе двух полупроводников с различными типами электро­проводности называется электронно-дырочной или р-n-переходом.

Электронно-дырочный переход является рабочим элементом большинства полупроводниковых приборов и интегральных микросхем.

Электронно-дырочный переход

при отсутствии внешнего электрического поля

В каждом из полупроводников р- и n-типов, объединенных в общую структуру, заряды совершают беспорядочное тепловое движение. В результате происходит их диффузия из одного полупроводника в другой. Как и при любой другой диффузии, например в газах и жидкостях, носители заряда пере­мещаются из области с большей концентрации в область с меньшей. Так из области полупроводника р-типа дырки диффундируют об­ласть полупроводника n-типа, а электроны из n-области в р-область (рис. 5). Концентрации основных и неосновных носителей, обусловли­вающие диффузию, изображены на графике (рис. 5).

Движение заряженных частиц под действием градиента концен­трации называется диффузией, а обусловленный этим движением ток называется диффузионным.

Диффузия основных носителей (электронов и дырок) создает ток, состоящий из двух составляющих

Iдиф= Inдиф +Ipдиф

В результате диффузии носи­телей по обе стороны границы раз­дела создаются объемные заряды.

Дырки, пришедшие в область n, рекомбинируют с электронами, что

Рис. 5.

р-n-переход при отсутствии внешнего электрического поля

приводит к созданию в пограничной области объемного заряда положительно­го знака, образованного главным образом положительно заряженными ионами атомов донорной примеси и, в небольшой степени, - пришедшими в эту об­ласть дырками.

Диффузия основных носителей (электронов и дырок) создает ток, состоящий из двух составляющих

Iдиф= Inдиф +Ipдиф

В результате диффузии носи­телей по обе стороны границы раз­дела создаются объемные заряды.

Дырки, пришедшие в область n, рекомбинируют с электронами, что приводит к созданию в пограничной области объемного заряда положительно­го знака, образованного главным образом положительно заряженными ионами атомов донорной примеси и, в небольшой степени, - пришедшими в эту об­ласть дырками.

Подобно этому в области р возникает отрицательный объемный заряд, об­разованный отрицательно заряженными ионами акцепторной примеси и, отчасти, пришедшими сюда электронами.

Между образовавшимися объемными зарядами возникает так называемая контактная разность потенциалов (рис. 5):

Таким образом, в p-n-переходе возникает потенциальный барьер, препятст­вующий диффузионному переходу носителей. Высота барьера равна контактной разности потенциалов и не превышает для германия 0,7В, а для кремния 1,1В. В результате чего диффузионный ток убывает. Одновременно с диффузионным пе­ремещением основных носителей происходит и обратное движение неосновных носителей под действием электрического поля контактной разности потенциалов.

Движение носителей заряда под действием электрического поля называют дрейфом, а ток - током дрейфа.

В данном случае дырки из n-области перемещаются в p-область, а электроны из p-области в n-область. Дрейфовый ток тоже имеет две составляю­щие

Iдр= Inдр +Ipдр.

В установившемся режиме диффузионные и дрейфовые токи равны между собой, а полный ток перехода

Iпер= Iдиф +Iдр.

Следует отметить, что область р-n-перехода, обедненная подвижными носи­телями, обладает повышенным сопротивлением и называется запирающим слоем.

Прямое включение р-n-перехода

Включение, при котором полярность источника совпадает с полярностью ос­новного носителя, называют прямым.

Действие прямого напряжения поясняет­ся потенциальной диаграммой (рис. 6).

Рис. 6.

Прямое включение

р-n-перехода

Электрическое поле, создаваемое внеш­ним источником (Евн), действует навстречу полю контактной разности потенциалов. Вы­сота потенциального барьера уменьшается и становится равной .

Диффузионный ток возрастает, т.к. большее число основных носителей может преодолеть потенциальный барьер.

В то же время дрейфовый ток уменьшается по той же причине, а также из-за уменьшения ширины р-n-перехода (рис. 6, L1<L). Уменьшение ши­рины снижает вероятность захвата полем пе­рехода неосновных носителей. В результате ток перехода уже не равен нулю:

Iпер= Iдиф +Iдр≠0.

Ток, возникающий при прямом включении, называется прямым током р-n-перехода. Он обусловлен диффузионным током основных носителей.

Обратное включение р-n-перехода

Включение, при котором полярность источника не совпадает с полярно­стью основного носителя называется обратным.

В этом случае электрическое поле, создаваемое внешним источником, складывается с полем контактной разности потенциалов (рис. 7).

Рис. 7.

Обратное включение

р-n-перехода

Результирующее поле усиливается, а потенциальный барьер становится равным .

Уже при небольшом повышении барьера диффузионное перемещение ос­новных носителей через переход практически прекращается, т.е. Iдиф=0, так как их энергии недостаточны для преодоления барьера. Дрейфовый ток незна­чительно увеличивается из-за увеличения разности потенциалов и ширины р-n-перехода (L2>L). Общий ток перехода становится равным Iпер= -Iдр= I0 .

Ток, проходящий через p-n-переход при обратном включении, называется обратным. Он обусловлен дрейфовым током неосновных носителей.

Поскольку концентрация неосновных носителей на несколько порядков меньше, чем основных, то

и ток в обратном направлении во много раз меньше. Вследствие этого обратное сопротивление перехода больше прямого.

ПЕРЕХОД МЕТАЛЛ-ПОЛУПРОВОДНИК

В современных полупроводнико­вых приборах кроме электронно-дырочных переходов применяют так­же контакт между металлом и полу­проводником.

Процессы в таких переходах за­висят от работы выхода электронов, т.е. от той энергии, которую должен затратить электрон, чтобы выйти из металла или полупроводника. Чем меньше работа выхода, тем больше электронов может выйти из данного тела. В различных металлополупроводниковых переходах может возни­кать как выпрямляющий, так и невы­прямляющий переход.

Невыпрямляющий (омический) переход

Если в контакте металла с полупроводником n-типа (рис. 8) работа выхо­да электронов из металла Ам меньше, чем работа выхода из полупроводника Аn, то будет преобладать выход электронов из металла в полупроводник.

В слое полупроводника около границы накапливаются основные носители (электроны), и этот слой становится обогащенным, т.е. в нем увеличивается концентрация электронов. Сопротивление этого слоя будет малым при любой полярности приложенного напряжения.

Такой переход не обладает выпрямляющим свойством. Его называют невыпрямляющим (омическим) контактом.

Рис. 8. Омический переход

Подобный же невыпрямляющий переход получается в контакте металла с полупроводником p-типа (рис. 8), если работа выхода электронов из полупро­водника меньше, чем работа выхода из металла (Аnрм). В этом случае из по­лупроводника в металл уходит больше электронов, чем в обратном направле­нии. В приграничном слое полупроводника также образуется область, обога­щенная основными носителями (дырками), имеющая малое сопротивление.

Оба типа невыпрямляющих контактов широко используются в полупро­водниковых приборах при устройстве выводов от n- и p-областей. Для этой це­ли подбираются соответствующие металлы.

Выпрямляющий переход

Рассмотрим контакт полупроводника n-типа с металлом, когда Амп.n, (рис. 9,а). Электроны будут переходить главным образом из полупроводника в металл, и в приграничном слое полупроводника образуется область, обеднен­ная основными носителями и имеющая большое сопротивление. Кроме того, переход электронов приводит к появлению контактной разности потенциалов.

Если к переходу подключить внешнее напряжение, причем "минус" к по­лупроводнику, а "плюс" к металлу, то внешнее электрическое поле компенси­рует внутреннее. Потенциальный барьер уменьшается, а ток основных носите­лей (электронов) из n-области увеличивается - переход открыт. При смене по­лярности ("минус" к металлу, "плюс" к полупроводнику) внешнее электрическое поле суммируется с внутренним, потенциальный барьер увеличивается, и переход не пропускает ток - закрыт.

Таким образом, переход между металлом и полупроводником обладает вентильными свойствами. Его называют барьером Шоттки.

Аналогичные процессы имеют место при контакте металла с полупровод­ником p-типа, когда Амп.р. Значительно большее количество электронов бу­дет переходить из металла в полупроводник. Их рекомбинация с дырками в по­лупроводнике приведет к уменьшению концентрации носителей в пригранич­ном слое - создается обедненный слой и контактная разность потенциалов (рис. 9,б).

Рис. 9. Выпрямляющий переход

Подключение внешнего напряжения плюсом к полупроводнику, а мину­сом к металлу снижает потенциальный барьер. Через переход течет ток, обу­словленный переходом электронов из металла в полупроводник - переход от­крыт.

Обратное включение увеличивает потенциальный барьер. Через переход будут течь лишь неосновные носители полупроводника р-типа - электроны. Так как их концентрация мала, то ток через переход практически не течет - пе­реход закрыт.

Выпрямляющий переход металл-полупроводник тоже используется для создания приборов с односторонней проводимостью, как и n-p-переход.

ПОЛУПРОВОДНИКОВЫЕ ДИОДЫ

Полупроводниковым диодом называется полупроводниковый прибор с одним p-n-переходом и двумя выводами, в котором используются свойства перехода.

Полупроводниковые диоды классифицируются:

- по материалу (Ge, Si, GaAs и т.д.);

- по технологии (точечные, сплавные, диффузионные);

- по конструкции (точечные, плоскостные, планарные);

- по функциональному назначению (выпрямительные, универсальные, стабилитроны, туннельные и т.д.).

Выпрямительный диод

Выпрямительные диоды предназначены для выпрямления переменного тока. В них используется основное свойство p-n-перехода: пропускать с малым сопротивлением ток в одном направлении и практически не пропускать в дру­гом.

На рис. 10 изображена вольт-амперная характеристика кремниевого диода, которую можно представить в виде двух частей:

- прямая - при прямом включении p-n-перехода;

- обратная — при обратном включении p-n-перехода.

В схеме обозначения диода анод (А) соответствует электроду, присоеди­ненному к р-области, а катод (К)-к n-области.

Рис. 10. Вольт-амперная характеристика диода

Прямая ветвь обусловлена диффузионным током основных носителей. На начальной стадии (U<1B) ток нарастает медленно, что обусловлено наличием потенциального барьера (контактной разности потенциалов), препятствующего движению основных носителей. На этом участке вольт-амперная характеристи­ка нелинейная. По мере преодоления внешним полем внутреннего (U>≈1В) потенциальный барьер исчезает и остается лишь сопротивление р- и n-областей, которое можно приближенно считать постоянным. Поэтому далее характеристика становится практически линейной при резком нараста­нии тока.

Обратный ток при увеличении обратного напряжения сначала быстро на­растает. Это вызвано тем, что уже при небольшом увеличении обратного на­пряжения повышается потенциальный барьер и резко уменьшается диффузи­онный ток. Следовательно, полный ток Iпepex.oбр=Iдр-Iдиф, резко увеличивает­ся.

Дальнейшее увеличение обратного напряжения не приводит к росту тока, т.к. его величина определяется числом неосновных носителей, концентрация которых низка. При некотором значении обратного напряжения (Uобр.max, рис. 10) ток начинает резко возрастать. Это возникает при напряженности поля около 107В/м. Неосновные носители при таком поле разгоняются на длине свобод­ного пробега до энергии, достаточной для ионизации атомов. Концентрация носителей лавинно нарастает в толщине перехода.

Процесс лавинного размножения носителей за счет ударной ионизации атомов называется лавинным пробоем (электрическим). К этому следует добавить, что концентрация носителей до­полнительно увеличивается за счет вырывания электронов из атомов сильным электриче­ским полем.

Лавинный пробой обра­тим, т.е. при снятии напряже­ния свойства p-n-перехода восстанавливаются.

При дальнейшем увели­чении напряжения наступает тепловой пробой. Плотность обратного тока в этом режиме достигает такой величины, что переход начинает разо­греваться. Это приводит к появлению дополнительных электронно-дырочных пар в переходе, что в свою очередь еще больше увеличивает плотность тока.

Процесс разрушения p-n-перехода вследствие его перегрева обратным током называется тепловым пробоем.

Основные параметры выпрямительных диодов:

- Iпр.ср – средний прямой ток;

- Uобр.мах – максимально допустимое обратное напряжение;

- Iобр – величина обратного тока при заданном обратном наряжении;

- Uпр – величина прямого напряжения при заданном прямом токе Iпр;