- •19.0. Введение
- •19.1. Моделирование как метод познания
- •20.1. Формы представления моделей
- •20.2. Классификация математических моделей
- •21.1. Математическая модель системы (объекта)
- •21.2. Методы математического моделирования
- •21.3. Технология математического моделирования системы (объекта)
- •1 Этап. Формулирование целей и задач моделирования, выявление проблем, описание объекта исследования.
- •2 Этап. Изучение априорной информации об объекте исследования.
- •3 Этап. Формализация постановки задачи: формальное описание целей и задач моделирования, формулировка требований.
- •4 Этап. Стратегическое и тактическое планирование эксперимента с объектом.
- •5 Этап. Экспериментирование с объектом.
- •6 Этап. Идентификация объекта.
- •7 Этап. Оценка адекватности модели, ее свойств, устойчивости, областей применения.
- •8 Этап. Решение задач моделирования, подведение итогов.
- •21.4. Контрольные вопросы и задания
- •22.1. Понятие информационной модели
- •22.2. Этапы моделирования
- •22.3. Типовые информационные модели
- •Графы, сети, деревья
- •23.1. Понятие алгоритма
- •23.2. Свойства алгоритма
- •23.3. Данные алгоритмов
- •23.4. Элементарные алгоритмические действия
- •23.5. Способы записи алгоритмов
- •24.0. Введение
- •25.0. Введение
- •26.0. Введение
- •27.0. Введение
- •28.1. Вычисление конечных и бесконечных сумм и произведений
- •28.2. Решение уравнений итерационными методами
- •28.3. Расчет таблиц функциональных зависимостей
- •28.4. Подсчет числа положительных, отрицательных и нулевых элементов массивов
- •28.5. Расчет модуля вектора и нормы матрицы
- •28.6. Расчет среднего и дисперсии элементов в массивах
- •28.7. Поиск минимальных или максимальных значений в массивах
- •28.8. Алгоритмы упорядочивания элементов в массивах
- •28.9. Умножение матрицы на вектор и матрицы на матрицу
- •28.10. Возведение квадратной матрицы в целую степень
- •28.11. Исключение элементов массивов
- •28.12. Расчет определителя квадратной матрицы
- •28.13. Транспонирование матриц
- •29.1. Что такое язык программирования?
- •29.2. Низкоуровневые языки программирования
- •29.3. Языки высокого уровня
- •Навигация по разделам:
- •29.3.1. Процедурные языки программирования
- •29.3.2. Функциональные языки программирования
- •29.3.3. Логические языки программирования
- •30.0. Введение
- •31.0. Введение
- •31.1. Постановка и формализация задачи
- •31.2. Разработка алгоритмов решения задачи
- •31.2. Разработка алгоритмов решения задачи
- •31.4. Анализ результатов
- •31.5. Сопровождение программ
- •32.0. Введение
- •33.1. Технология структурного программирования
- •33.2. Структурные методы анализа и проектирования по
- •33.3. Модульное программирование
- •Навигация по разделу
- •33.3.1. Hipo - диаграмма
- •33.3.2. Метод нисходящего проектирования
- •33.3.3. Метод расширения ядра
- •33.3.4. Метод восходящего проектирования
- •33.4. Базовые управляющие структуры структурного программирования
- •33.5. Проектирование и тестирование программы
- •33.6. Подпрограммы, процедуры и функции
- •Навигация по разделу:
- •33.6.1. Основные понятия и терминология
- •33.6.2. Локальность
- •33.6.3. Параметры процедуры
- •34.1. Методология объектно-ориентированного программирования
- •34.2. Объектно-ориентированные методы анализа и проектирования по
- •34.3. Основные принципы построения объектной модели
- •34.4. Основные элементы объектной модели
- •34.5. Пример разработки консольного приложения в технологии объектно-ориентированного подхода
- •Навигация по разделу:
- •34.5.1. Диаграмма прецендентов uml
- •34.5.2. Диаграмма последовательности uml для прецедента
- •34.5.3. Диаграмма классов uml для прецендента «перевести р-ичную строку в число»
- •34.5.4. Текст приложения на языке Object Pascal
- •35.0. Введение
- •35.1. История развития бд
- •35.2. Классификация бд
- •Навигация по разделу:
- •35.2.1. Основные функции субд
- •36.1. Основные понятия бд
- •36.2. Основные понятия реляционной модели бд
- •36.3. Предпроектное обследование предметной области. Связи таблиц
- •36.4. Нормализация отношений
- •36.5. Общие сведения о ms Access
- •36.6. Приложение
- •36.6. Приложение
- •37.2. Связь между таблицами и целостность данных
- •37.3. Создание запросов в ms access
- •Навигация по разделу:
- •37.3.1. Запросы на выборку
- •37.3.2. Запросы с параметрами
- •37.2.3. Запросы с вычислениями
- •37.2.4. Итоговые запросы
- •37.2.5. Перекрестные запросы
- •37.4. Формы
- •37.5. Отчеты
- •38.0. Введение
- •38.1. Различные подходы к построению систем ии
- •38.2. Экспертные системы
- •Методы, основанные на правилах.
- •Методы, основанные на фреймах.
20.1. Формы представления моделей
|
← 19.1. Моделирование как метод познания |
20.2. Классификация математических моделей → |
В основе моделирования лежит теория подобия, которая утверждает, что абсолютное подобие может иметь место лишь при замене одного объекта другим точно таким же [6]. При моделировании абсолютное подобие не имеет места и стремятся к тому, чтобы модель достаточно хорошо отображала исследуемую сторону функционирования объекта.
В основу классификации видов моделирования можно положить разные классификационные признаки [6],[7],[8],[10],[11],[12],[13],[14],[15],[16],[17].
В зависимости от формы представления объекта (системы) можно выделить [11],[12]:
- мысленные (абстрактные) модели;
- материальные (реальные) модели.
Классификация моделей в зависимости от формы представления приведена на рисунке 20.1.

Рисунок 20.1. Классификация моделей по форме представления
Материальные модели воспроизводят физические, геометрические и другие свойства объектов в материальной форме. Материальная модель может быть похожей копией объекта, выполненной из другого материала, в другом масштабе, с отсутствием ряда деталей. Строятся реальные модели средствами материального мира.
В свою очередь материальные модели подразделяются на физические, аналоговые и условные модели [12].
При построении физических моделей подобие между оригиналом и моделью устанавливается в результате физического взаимодействия (прямое подобие). Отличительной особенностью физической модели является то, что она в некотором смысле «выглядит» подобно моделируемому объекту.
Примеры физических моделей: фотография, модель самолета, игрушечный кораблик, домик из кубиков, модель кристаллической решетки, макет здания, копия произведения искусства. Физические модели могут иметь вид полномасштабных объектов (например, тренажеры), выполняться в уменьшенном масштабе (например, модель солнечной системы, глобус) или в увеличенном масштабе (например, модель атома).
Аналоговая модель – модель, в которой свойство реального объекта представляется некоторым другим свойством аналогичного по поведению объекта. При построении аналоговых моделей используется косвенное подобие.
Примеры аналоговых моделей: электрический ток в подходящих цепях может отображать поток товаров в некоторой системе; логарифмическая линейка, в которой количественные характеристики некоторого объекта представлены отрезками шкалы в логарифмическом масштабе; часы – аналог времени; автопилот – аналог летчика; подопытные животные у медиков – аналоги человеческого организма.
Условные модели – модели, подобие которых оригиналу устанавливается в результате соглашения (условное подобие).
Примеры условных моделей: деньги (модель стоимости); удостоверение личности (официальная модель владельца); разнообразные сигналы (модели сообщения); рабочие чертежи (модели будущей продукции); карты (модели местности) и т.д.
Модель может отображать реальность более абстрактно – словесным описанием в свободной форме, описанием, формализованным по каким-то правилам, математическими соотношениями и т.п. Будем называть такие модели мысленными (абстрактными). Абстрактные модели строятся средствами мышления.
При классификации абстрактных моделей выделяют следующие: образные, вербальные, знаковые (математические, информационные).
Образные модели – получены в результате раздумий, умозаключений.
Например, наше поведение при переходе улицы. Человек анализирует ситуацию на дороге и вырабатывает свою модель поведения. Или музыкальная тема, промелькнувшая в голове у композитора, рифма, пока еще в сознании поэта.
Вербальные (словесные и текстовые) модели. Эти модели используют последовательности предложений на формализованных диалектах естественного языка для описания той или иной области действительности (примеры такого рода моделей: милицейский протокол, правила дорожного движения, нотный текст, стихотворение).
Знаковая модель описывает моделируемую систему с помощью условных знаков, символов, в частности, в виде математических, физических и химических формул. Наиболее мощные и развитые классы знаковых моделей представляют собой математические модели и информационные модели.
Математическая модель – это искусственно созданный объект в виде математических, знаковых формул, который отображает и воспроизводит структуру, свойства, взаимосвязи и отношения между элементами исследуемого объекта.
Например, математическая модель звезды будет представлять собой сложную систему уравнений, описывающих физические процессы, происходящие в недрах звезды. Другой пример математической модели – математические соотношения, позволяющие рассчитать оптимальный (наилучший с экономической точки зрения) план работы какого-либо предприятия.
Приведем несколько определений информационной модели, данных разными авторами.
Информационная модель [3]— модель объекта, представленная в виде информации, описывающей существенные для данного рассмотрения параметры и переменные объекта, связи между ними, входы и выходы объекта и позволяющая путём подачи на модель информации об изменениях входных величин моделировать возможные состояния объекта.
Информационная модель [16] – совокупность информации, характеризующая существенные свойства и состояния объекта, процесса, явления, а также взаимосвязь с внешним миром.
Информационные модели [11],[14] – класс знаковых моделей, описывающих информационные процессы (получение, передачу, обработку, хранение и использование информации) в системах самой разнообразной природы.
Примерами таких моделей могут служить OSI – семиуровневая модель взаимодействия открытых систем в компьютерных сетях, или машина Тьюринга – универсальная алго-ритмическая модель.
Подчеркнем, что приведенная классификация лишь одна из многих, граница между видами моделей, их иерархия может быть представлена весьма условно. Например, в ряде литературных источников [13],[16] понятие информационная модель рассматривают более широко и делят все модели на материальные и информационные. В основе такого подхода лежит расширительное толкование понятия «информация»: «информацией является почти все на свете, а может быть, даже вообще все». Такой подход является не вполне оправданным, так как он переносит информационную природу познания на суть используемых в процессе моделей – при этом любая модель является информационной [11].
Существует подход, при котором информационные модели относят к подклассу математических моделей. Однако, в рамках информатики как самостоятельной науки, отдельной от математики, физики, лингвистики и других наук, выделение класса информационных моделей представляется целесообразным [11].
Далее остановимся более подробно на классификации математических моделей, так как именно этот класс моделей широко применяется при решении практических задач.
|
← 19.1. Моделирование как метод познания |
20.2. Классификация математических моделей → |
↑ Наверх
