21
.docxЭтиленоксид, полученный способом данного изобретения, может быть подвергнут превращению в 1,2-этандиол, в простой 1,2-этандиоловый эфир или этаноламин. Поскольку данное изобретение приводит к более выгодному способу производства этиленоксида, оно одновременно приводит к более привлекательному способу, который включает получение этиленоксида в соответствии с данным изобретением и последующее применение полученного этиленоксида для производства 1,2-этандиола, простого 1,2-этандиолового эфира и/или этаноламина.
Превращение в 1,2-этандиол или простой 1,2-этандиоловый эфир может включать, например, взаимодействие этиленоксида с водой, приемлемо - с применением кислотного или основного катализатора. Например, для получения преимущественно 1,2-этандиола и, в меньшей степени, простого 1,2-этандиолового эфира этиленоксид может подвергаться взаимодействию с десятикратным молярным избытком воды в жидкофазной реакции в присутствии кислотного катализатора, например, 0,5-1,0 мас.% серной кислоты из расчета на общую массу реакционной смеси, при 50-70°C и абсолютном давлении 1 бар, или подвергаться реакции в газовой фазе при 130-240°C и абсолютном давлении 20-40 бар, предпочтительно, в отсутствие катализатора. Если доля воды снижается, то доля простых 1,2-этандиоловых эфиров в реакционной смеси повышается. Простые 1,2-этандиоловые эфиры, полученные таким образом, могут представлять собой простые диэфиры, триэфиры, тетраэфиры или последующие эфиры. Альтернативно, простые 1,2-этандиоловые эфиры могут быть получены превращением этиленоксида под действием спирта, в частности, первичного спирта, такого как метанол или этанол, посредством замещения, по меньшей мере, части воды спиртом.
Превращение в этаноламин может включать, например, взаимодействие этиленоксида с аммиаком. Может быть использован безводный или водный аммиак, хотя безводный аммиак обычно используется, чтобы способствовать получению моноэтаноламина. Способы, которые могут применяться для превращения этиленоксида в этаноламин, описаны, например, в публикации US-A-4845296, которая включена в данное описании посредством ссылки.
1,2-Этандиол и простой 1,2-этандиоловый эфир могут использоваться в самых различных областях промышленного применения, например, в пищевой промышленности, в напитках, табачных изделиях, косметических продуктах, термопластичных полимерах, способных к отверждению полимерных системах, детергентах, системах теплообмена и т.п. Этаноламин может быть использован, например, при обработке («облагораживании») природного газа.
Кроме особо оговоренных случаев, низкомолекулярные органические соединения, упомянутые в данном описании, например, простые 1,2-этандиоловые эфиры и модификаторы реакций, содержат обычно, самое большее, 40 атомов углерода, более типично, самое большее, 20 атомов углерода, в частности, самое большее, 10 атомов углерода, более точно, самое большее, 6 атомов углерода. Как определено в данном описании, интервалы количеств атомов углерода (т.е. углеродное число) включают количества, конкретно указанные для пределов интервалов.
При наличии описанного в целом изобретения, дополнительное объяснение может быть получено при обращении к приведенным далее примерам, которые представлены только для иллюстрации данного изобретения и не предназначены для ограничения его области, кроме случаев, оговоренных особо.
ПРИМЕР 1
Высокоселективный катализатор, содержащий серебро и промотирующие количества рения, лития, цезия и серы на альфа-оксиде алюминия, испытывают при получении этиленоксида из этилена и кислорода. Для этого образец измельченного катализатора загружают в U-образную реакционную трубку из нержавеющей стали. Трубку погружают в баню из расплавленного металла (среда нагрева) при 180°C и концы соединяют с системой подачи газа. Газовую смесь пропускают через слой катализатора прямотоком. Массу используемого катализатора и скорость потока на входе регулируют таким образом, чтобы получить объемную часовую скорость подачи газа 3300 нл/(л.час.). Абсолютное давление входящего газа равно 1550 кПа.
Композицию газовой смеси регулируют для получения следующего состава: 30 об. процентов этилена, 8 об. процентов кислорода, 1 об. процент диоксида углерода, 2,5 объемных частей на миллион (об.ч/млн.) этилхлорида и азот - остальное до 100%.
Температуру слоя катализатора поднимают со скоростью 10°C в час до 225°C и затем температуру регулируют так, чтобы была достигнута конверсия кислорода 40 мольных процентов. Концентрацию этилхлорида в газообразной смеси доводят до 2,5 об.ч/млн. для получения оптимальной селективности образования этиленоксида. Активность катализатора выражают как температуру, при которой достигается 40 мольных процентов конверсии кислорода (Т40); селективность представляет собой селективность при температуре Т40. В течение опыта катализатор подвергают разложению и для поддержания постоянной конверсии 40 мольных процентов температуру постепенно повышают. Результаты представлены в таблице.
В трех аналогичных сравнительных опытах концентрация диоксида углерода в газовой смеси составляет от 5 до 7 объемных процентов вместо 1 объемного процента. Среднее значение результата трех сравнительных опытов также представлено в таблице.
|
Таблица |
||
|
Концентрация СО2, об.% |
1 |
5-7 |
|
Время реакции, дни |
263 |
195 |
|
Т40, исходная, °C |
248 |
261 |
|
Средняя скорость снижения активности, °C/месяц |
2,1 |
2,9 |
|
Исходная селективность, мольн.% |
86,0 |
85,1 |
|
Средняя скорость снижения селективности, мольн.%/месяц |
0,7 |
1,1 |
|
Т40: температура при 40 мольн.% конверсии кислорода |
||
Результаты, представленные в таблице 1, четко показывают, что снижение концентрации диоксида углерода в питающей смеси реактора эпоксидирования улучшает технологические характеристики высокоселективного катализатора, связанные с его активностью, селективностью и сроком службы.
ПРИМЕР 2
Приведенный расчетный пример представляет данные, полученные с использованием патентованной модели для прогнозирования свойств высокоселективного катализатора эпоксидирования в условиях работы при часовой объемной скорости подачи 4700 нл/(л.час), манометрическом давлении 21,7 бар и производительности 184 кг/(м3.час) для питающей смеси реактора, содержащей 25 мольных процентов этилена и 8 мольных процентов кислорода. Модель основана на корреляции данных по свойствам реальных катализаторов, собранных из многочисленных источников, таких как данные активности для микрореакторов, данные для пилотных установок и других источников технологических характеристик катализаторов.
Фиг.2 представляет селективность высокоселективного катализатора эпоксидирования как функцию старения катализатора, выраженную в зависимости от совокупной производительности по этиленоксиду, представленной в ктоннах/м3 для соответствующих концентраций диоксида углерода в питающей смеси, представленных на фиг.4. Графики показывают, что имеет место четкая зависимость между сроком службы катализатора и исходной концентрацией диоксида углерода и между селективностью и исходной концентрацией диоксида углерода. Как показано на фиг.2, скорость снижения селективности действия катализатора при технологической переработке питающей смеси с концентрацией диоксида углерода менее 1 мольного процента (кривая «I») значительно ниже, чем скорость снижения селективности катализатора при переработке исходного сырья с содержанием диоксида углерода более 4 мольных процентов (кривая «II»). Из кривых также видно, что исходная селективность высокоселективного катализатора выше в случае, когда концентрация диоксида углерода в питающей смеси составляет менее 1 мольного процента, в отличие от питающей смеси с концентрацией диоксида углерода, составляющей более 4 мольных процентов. Представленные данные показывают, что значительные преимущества в селективности и сроке службы высокоселективного катализатора эпоксидирования могут быть получены при переработке питающей смеси реактора эпоксидирования с низкой концентрацией диоксида углерода. Другие сравнительные данные относятся к использованию высокоактивного катализатора, работающего при концентрации диоксида углерода, составляющей более 4 мольных процентов (кривая «III»).
Фиг.3 представляет температуру хладагента реактора как функцию старения катализатора, используемого в реакции эпоксидирования для соответствующих концентраций диоксида углерода в питающей смеси, представленных на фиг.4. Температура хладагента реактора приближается к температуре реакции. Как показывают данные, скорость потери активности у катализатора эпоксидирования способа данного изобретения, используемого при переработке питающей смеси реакции эпоксидирования с низкой концентрацией диоксида углерода, составляющей менее 1 мольного процента (кривая «I»), значительно ниже скорости потери активности у катализатора эпоксидирования, используемого при переработке питающей смеси с более высокой концентрацией диоксида углерода, чем в способе данного изобретения (кривая «II»). Представленные данные показывают, что стабильность высокоселективного катализатора эпоксидирования, представленная как скорость снижения активности катализатора, значительно улучшается при использовании способа данного изобретения, который включает технологическую обработку питающей смеси реакции эпоксидирования с низкой концентрацией диоксида углерода. Дополнительные сравнительные данные относятся к использованию высокоактивного катализатора, работающего при концентрации диоксида углерода, составляющей более 4 мольных процентов (кривая «III»).
Хотя данное изобретения было описано с помощью настоящего предпочтительного варианта, квалифицированному специалисту будут понятны приемлемые вариации и модификации. Такие вариации и модификации также входят в область данного изобретения и прилагаемую формулу изобретения.
Формула изобретения
1. Способ производства этиленоксида, включающий:
загрузку питающей смеси реактора, включающей этилен, кислород и диоксид углерода в некоторой концентрации, в зону реакции эпоксидирования, содержащую высокоселективный катализатор эпоксидирования, включающий от 0,1 до 10 мкмоль рения на 1 г общей массы катализатора и работающий в условиях реакции эпоксидирования;
вывод из указанной зоны реакции эпоксидирования выходящего потока реактора эпоксидирования;
загрузку, по меньшей мере, части указанного выходящего потока реактора эпоксидирования в устройство-абсорбер этиленоксида для разделения указанной, по меньшей мере, части указанного потока, выходящего из реактора эпоксидирования, на верхний газообразный поток и поток этиленоксида;
деление указанного верхнего газообразного потока на отделенную часть потока, если таковая имеет место, и оставшуюся часть потока, где указанная оставшаяся часть потока составляет, по меньшей мере, от 30 до 100% указанного верхнего газообразного потока;
загрузку указанной оставшейся части потока в качестве питающей газообразной смеси, содержащей диоксид углерода, в систему устройств удаления диоксида углерода для разделения указанного питающего газа, содержащего диоксид углерода, на газовый поток, обедненный диоксидом углерода, и газовый поток диоксида углерода; и объединение, по меньшей мере, части указанного газового потока, обедненного диоксидом углерода, с кислородом и этиленом для получения тем самым питающей смеси реактора эпоксидирования.
2. Способ по п.1, где указанная стадия объединения дополнительно включает объединение, по меньшей мере, части указанной отделенной части потока с указанной, по меньшей мере, частью указанного газового потока, обедненного диоксидом углерода, указанным кислородом и указанным этиленом, с получением тем самым указанной питающей смеси реактора эпоксидирования.
3. Способ по п.1 или 2, где указанные условия реакции эпоксидирования включают температуру реакционной зоны ниже 260°С.
4. Способ по п.3, где указанные условия реакции эпоксидирования включают температуру реакционной зоны ниже 250°С, в частности температура находится в интервале от 180 до 250°С, более точно в интервале от 190 до 240°С.
5. Способ по п.1, где указанная концентрация диоксида углерода составляет менее 4 мол.% процентов из расчета на всю питающую смесь реактора эпоксидирования.
6. Способ по п.5, где указанная концентрация диоксида углерода составляет менее 3 мол.% процентов из расчета на всю питающую смесь реактора эпоксидирования.
7. Способ по п.6, где указанная концентрация диоксида углерода находится в интервале от 0,1 до менее 2 мол.%, в частности в интервале от 0,2 до менее 1,25 мол.% из расчета на всю питающую смесь реактора эпоксидирования.
8. Способ по п.1, где указанная оставшаяся часть потока составляет, по меньшей мере, от 40 до 100% указанного верхнего газообразного потока.
9. Способ по п.8, где указанная оставшаяся часть потока составляет от, по меньшей мере, 50 до 100% указанного верхнего газообразного потока.
10. Способ по п.9, где по существу весь указанный верхний газообразный поток загружают в качестве питающего газового потока, содержащего диоксид углерода, в систему устройств удаления диоксида углерода для разделения указанного питающего газа, содержащего диоксид углерода.
11. Способ по п.1, где указанный высокоселективный катализатор эпоксидирования включает материал носителя, каталитически эффективное количество серебра и от 0,1 до 10 мкмоль рения на 1 г из расчета на общую массу катализатора.
12. Способ по п.11, где материал носителя представляет собой альфа-оксид алюминия, количество серебра находится в интервале от 1 до 40 мас.% и количество рения находится в интервале от 0,1 до 10 мкмоль на 1 г из расчета на общую массу катализатора.
13. Способ получения 1,2-этандиола или простого 1,2-этандиолового эфира, включающий:
получение этиленоксида при помощи способа производства этиленоксида по любому из пп.1-12 и
превращение этиленоксида в 1,2-этандиол или простой 1,2-этандиоловый эфир.
РИСУНКИ




