- •1.Классификация высокомолекулярных соединений (вмс). Основные понятия и определение вмс. Классификация полимеров.
- •3.Состав и свойства пластических масс.
- •10. Производство полиэтилена среднего давления
- •12 Процессы вальцевания и каландрования при переработке термопластов
- •13. Переработка термопластов методом экструзии. Типы экструдеров
- •15 Переработка отходов термопластов
- •18. Фенопласты. Волокнистые материалы на основе фенолоальдегидных олигомеров.
- •19. Фенопласты. Слоистые пластики на основе фенолоальдегидных олигомеров.
- •20. Аминопласты. Пресс-порошки на основе аминоальдегидных олигомеров.
- •23. Литье под давлением реактопластов. Литьевые машины для рп.
- •28. Эластомеры. Натуральный каучук. Синтетические каучуки общего назначения. Синтетические каучуки специального назначения.
- •34 Классиф. Лакокр. Материалов.Характеристика основных компонентов лакокрасочных материалов
- •35. Утилизация и обезвреживание отходов. Способы переработки отходов полимерных производств.
- •2.Основные методы синтеза полимеров. Характеристика способов проведения синтеза полимеров.
- •4.Классификация пластических масс. Термопласты. Технологические свойства термопластов.
- •5.Свойства и применение полиолефинов.
- •6.Свойства полиэтилена и способы его получения.
- •7.Процесс получения полиэтилена. Характеристика основного оборудования.
- •8.Производство полиэтилена низкой плотности.
- •11.Основные классы термопластов, их свойства и применение.
- •14.Переработка термопластов методом литья под давлением. Технологический процесс литья под давлением термопластов. Типы литьевых машин.
- •17.Промышленные реактопласты. Фенопласты. Пресс-порошки на основе фенолоальдегидных олигомеров.
- •32. Основные черты гетероцепных синтетических волокон, их характеристики и основные свойства. Производство гетероцепных синтетических волокон.
- •25. Прессовый метод получения пенопластов.
- •31. Классификация синтетических волокон, особенности их производства и основные отличия в методах производства волокон.
- •30. Основные процессы производства эластомерных композиций и изделий из них.
- •26 Беспрессовый метод пол-я пенопластов.
- •21. Аминопласты. Пресс-порошки. Слоистые пластики.
- •22. Прессование реактопластов. Оборудование прессовых производств.Технологич. Проц-с прессования реактопластов.
3.Состав и свойства пластических масс.
1. Механическая прочность – это способность тела противостоять разрушению под действием внешних сил. Она бывает: - прочность при растяжении ( хар-тся нагрузкой при которой разрушается образец); - прочность при сжатии (хар-тся напряжением при сжатии, которое соотв. нагрузке, вызывающей разрушения образца); - прочность при изгибе (хар-тся изгибающим напряжением, возникающим в момент разрушения образца); - прочность при ударе ( хар-тся энергией, затрачиваемой на разрушение образца при ударе); - показатель твердости (хар-тся способностью материала сопротивлятся внедрению инородного тела). 2.Теплофизические св-ва – используются при определении термодинамических хар-к полимеров. К ним относятся теплопроводность, температуропроводность, теплоемкость, тепловое расширение. Теплостойкость – хар-т способность материалов не размягчаться при повышении t при действии постоянной нагрузки. Морозостойкость – хар-т способность полимеров сохранять свои эксплуатационные св-ва при низких t. 3. Электрические св-ва – это группа показателей, которые определяют поведение пластмасс в электрическом поле. Электрич. прочность – хар-тся значением напряженности электрич. поля при котором происходит пробой полимерного диэлектрика. Удельное объемное диэлектрическое сопротивление – хар-тся отношением напряженности электрич. поля к плотности тока, который проходит через объем образца полимера. Удельное поверхностное электрическое сопротивление – это отношение напряженности электрич. тока к плотности тока, проходящего по поверхности образца. 4. Оптические св-ва – хар-ют взаимодействие полимера с электромагнитным излучением оптического диапазона. К ним относятся: прозрачность, приломление, отражение, поглащение, рассеивание. Хим. стойкость – хар-тся отношением к различным агрессивным средам, к плесени, грибам. Водостойкость – это способность материала сохранять свои св-ва при длительном воздействии воды.Пластмассы – многокомпонентные смеси, основой которых является полимер или смесь полимеров, он в свою очередт связывает др компоненты системы и передает материалу свои св-ва (связующее). Кроме него в составе есть наполнители, пластификаторы, стабилизаторы, красители, смазки, отвердители и др. Введение добавок улучшает св-ва. Требования к добавкам: -должны хорошо распределятся в полимере с образованием достаточно однородной композиции, -иметь стабильные свойства при хранении, переработке и эксплуатации, -быть не токсичными, -низкая стоимость. Наполнители. Их вводят для улучшения механических свойств, уменьшения усадки во время отверждения, повышения стойкости к действию различных сред, для снижения стоимости. В зависимости от характера взаимодействия наполнители бывают: инертные (практически не изменяют свойства, снижают стоимость изделия) и активные (улучшают эксплуатационные свойства). Наполнители бывают порошкообразные, волокнистые, зернистые, листовые. По природе наполнители: органические (древесная мука), неорганические (мел, тальк). Пластификаторы – вводят для повышения пластичности материала при его переработке и эластичности материала при эксплуатации. Пластификатор должен термодинамично совмещаться с полимером. Совместимость зависит от природы полимера и пластификатора. Стабилизаторы. Старение – это процесс возникновения и развития нежелательных химических реакций под воздействием тепла, света, кислорода, воздуха, влаги, механических нагрузок. Для защиты от старения применяют специальные вещества – стабилизаторы. Светостабилизаторы – применяют для защиты полимеров от светового старения. Их действие основывается на поглощении солнечного света. Антирады – способствуют повышению стойкости полимера к действию ионизирующего излучения. Состав пластических масс. Смазывающие вещества. Пигменты. Сшивающие агенты (отвердители, структурообразователи- повышение прочности. Антипирены(горючесть). Антистатики(препятствуют накоплению эл-ва). Антимикробные агенты.
9. Производство полиэтилена высокой плотности. Для производства ПЭНД используют 2 основных метода: суспензионный и газофазный. По суспензионному методу ПЭВП получают в среде органического растворителя (гексан, бензин) в присутствии комплексных металлоорганических катализаторов. ПЭВП при низком давлении получают полимеризацией этилена в органическом растворителе. непрерывным методом в присутствии катализаторов Циглера-Натта – комплексное металлоорганическое соединение, которое состоит из четыреххлористого титана (TiCl4) и алкилов Al (триэтил, триизобутил, диэтил алюминий хлорида (Al(C2H5)2Cl2). Скорость полимеризации этилена и свойства получаемого ПЭ зависят от концентрации и активности катализаторов, t и Р процесса. Оптимальная t полимеризации около 80. Если t повышается, резко снижается скорость процесса, т.к. разлагается катализатор. Если увеличивается Р, то значительно ускоряется процесс и в результате трудно поддерживать заданный режим. Чтобы регулировать показатель текучести расплава (ПТР) и молекулярную массу полимера в реакционную среду вводят водород, простые эфиры и др. добавки. Технологический процесс производства ПЭВП состоит из следующих основных стадий:- приготовление катализатора,- полимеризация этилена,- выделение, промывка и сушка порошка полимера. В этом процессе одновременно с высокомолекулярным ПЭ обрабатывается до 10% низкомолекулярного полимера. Его называют воск. При низком давлении можно получать сополимер из этилена с пропиленом при содержании полимера 1-10%. По газофазному методу полимеризацию этилена проводят в газовой фазе при низком давлении с использованием металлоорганических катализаторов на носителях. Отличительной особенностью является то, что использование различных каталитических систем позволяет получать полимер с различным молекулярно-массовым распределением, с различной молекулярной массой и различной ПТР. Реакционный аппарат для получения ПЭ газофазным методом представляет собой стальную вертикальную емкость – реактор. Верхняя часть расширена, чтобы предотвращать унос образовавшихся частиц полимера за счет уменьшения давления газового потока. В нижней части реактора расположена газораспределительная плита с отверстиями, поток циркуляционного газа непрерывно подается через распределительную решетку. Газофазный метод предусматривает использование катализаторов на основе соединения хрома ПЭВП выпускается в виде гранул.
