Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
gidra_otvety.docx
Скачиваний:
534
Добавлен:
26.03.2015
Размер:
10.24 Mб
Скачать

21. Графическое представление и практическое применение д.Бернулли

Выделим двумя нормальными к линиям тока се­чениями 1 - 1 и 2 - 2 отсек жидкости, который будет находиться под действием сил давленияи сил тяжестиdG Под действием этих сил через малый про­межуток времени отсек жидкости из своего первона­чального положения переместится в положение между __сечениями

Силы давления, приложен­ные к живым сечениям отсека с правой и с левой сторон имеют противоположные друг другу направления.

Перемещение всего отсека жидкости можно заменить перемещением массы жидко­сти между сечениями: 1-1иГ-Г в положение 2-2и2'-2', при этом центральная часть отсека жидкости (можно утверждать) своего первоначального положения не меняет и в движении жидкости участия не принимает.

Тогда работа сил давления по перемещению жидкостиможно определить сле­дующим образом:

Работа сил тяжести будет равна работе по перемещению веса отсека жидкости на разницу уровней

При перемещении отсека жидкости кинетическая энергия изменится на величину:

f

Теперь запишем общее уравнение баланса энергии:

Разделив все элементы уравнения на dG и, переместив в левую часть уравнения ве­личины с индексами «1» а в правую - с индексом «2», получим:

Это последнее уравнения носит название уравнения Бернулли для элементарной струйки идеальной жидкости.

Интерпретация уравнения Бернулли

Все члены уравнения Бернулли имеют линейную размерность и представляют собой напоры:

z - называется геометрическим напором (геометрической высотой), представляет собой место положения центра тяжести живого сечения элементарной струйки относи­тельно плоскости сравнения,

- называется пьезометрическим напором (пьезометрической высотой),

представляет собой высоту, на которую могла бы подняться жидкость при отсутствии движения

- носит название скоростного напора.

- носит название гидродинамического напора

Уравнение Бернулли является выражением закона сохранения механической энер­гии движущейся жидкости, по этой причине все части уравнения представляют собой ве­личины удельной энергии жидкости:

z - удельная энергия положения,

- удельная энергия давления,

- удельная потенциальная энергия,

- удельная кинетическая энергия

- удельная механическая энергия.

22. Режимы движения жидкости. Опыт о.Рейнольдса и его анализ

Ламинарный – жидкость движется слоями, не перемешиваясь; при малых скоростях струйка не перемешивается с др. жидкостью.

Турбулентный – частицы жидкости перемешиваются; при больших скоростях струйка перемешивается со всей жидкостью , что указывает на наличие турбулентного течения.

В 1885г. Рейнольдсом было установлено, что критерием режима жидкости является безразмерная величина представляющая собой: этот критерий режима течения называется числом Рейнольдса. При напорном движении жидкости в круглых за характерный размер L принимают диаметр трубы, в остальных случаях гидравлический радиус.

Опытно доказано, что ламинарный режим устойчив, если отношение: если же больше 956, то неустойчив. Пользуясь числом Рейнольдса моно заранее установить какой режим течения будет в патоке.

Режимы течения жидкости

Расчетное выражение для А.г (и численное значение коэффициента) зависит от режима течения жидкости. Понятие о режимах течения утвердилось в гидравлике после исследований английского ученого О.Рейнольдса в конце XIX в.

Экспериментальная установка Рейнольдса состояла (рис.) из прозрачно­го резервуара 1, заполняемого рабочей жидкостью (уровень ее в ходе опыта поддерживался постоянным с помощью подпитки 7 и сливного устройства 4), прозрачной горизонтальной трубы 2 с плавным входом, регулировочного вентиля3 и сосуда с жидкой темной краской 6. Из сосуда 6 краска по капиллярной трубке могла подводиться в какую-либо точку входного сечения трубы 2 (поток краски регулировали краном 5). В ходе опытов варьировали диаметр труб 2, скорости жидкости (их рассчитывали по расходу) и ее свойства (плотность, вяз­кость). Индикатором характера течения служила краска.

 

Опыт Рейнольдса:

1 — резервуар с рабочей жидкостью, 2 — экспериментальная труба, 3 — регулирующий вентиль, 4 — слив избытка жидкости, 5 — кран, 6 — сосуд с краской, 7 — линия подачи рабочей жидкости

Опыты с гладкими трубами показали, что в трубах малого диаметра при небольших скоростях жидкости подаваемая во входное сечение струйка краски проходила по всей длине трубы не размываясь. Такое параллельно-струйчатое (слоистое) течение было названо ламинарным (по латыни lamina — полоска, пластинка). В трубах большого диаметра и при высоких скоро­стях частицы жидкости (а с нею и краски) перемещались хаотически по различным траекториям — с визуально наблюдаемыми завихрениями; в результате поток интенсивно перемешивался и на некотором расстоянии от входа в трубу равномер­но окрашивался. Такое бурное течение с нестационарным возникновением и разрушением жидкостных образований было названо турбулентным (turbulentus означает бурный, беспорядочный). Рейнольдc установил, что склонность жидкости к ламинарному течению возрастает при увеличении ее вязкости и понижении плотности р, к турбулентному течению — с ростом р и снижением µ. Позднее было найдено, что характер течения определяется значением безразмерного комплекса

wdp/µ= wd/v = Re,

w - скорость движения жидкости,

d - внутренний диаметр трубы,

v,µ - кинематическая и динамическая вязкость. 

названного впоследствии числом Рейнольдса. При значениях Rе ниже некоторой критической величины (Rе кр) течение жидкости — ламинарное; для круглых труб Rе кр примерно равно 2300. При увеличении Rе (для изотермического течения в прямых круглых трубках — сверх 104) течение становится существенно турбулентным, причем с ростом Rе интенсивность турбулентности повышается.

Rе представляет собой соотношение сил инерции и вязкости. В случае ламинарного режима (малые значения Rе) доминируют силы вязкости (они — в знаменателе Rе), влияние сил инерции вырождается. При этом использование числа Rе, вообще говоря, теряет смысл (или приобретает формальный характер). В случае турбулентного режима (высокие Rе) в целом преобладают силы инерции. Однако вблизи стенок канала (в очень тонком слое), где скорости малы, течение остается близким к ламинарному; поэтому силы вязкости продолжают оказывать некоторое влияние на характер течения — использование Rе для характеристики таких течений сохраняет смысл. Лишь при очень высоких Rе (для круглых труб — свыше 2*107) пристенный слой оказывается практически сорванным — доминируют силы инерции, а влияние сил вязкости вырождается. Значит, вырождается и число Rе — его использование становится формальным. В обоих случаях доминирования сил вязкости либо инерции течения именуют автомодельными относительно критерия Рейнольдса . При значениях Rе, несколько превышающих Rе кр (от 2300 до 10000), силы инерции и вязкости сопоставимы по величине: здесь уже нарушено слоистое течение, но неупорядоченность (хаотичность) выражена еще слабо. Эти режимы течения называются переходными (в зарубежной литературе — промежуточными).

На практике возможно некоторое смещение указанных диапазонов. Так, при очень плавном входе жидкости в круглую трубу и отсутствии каких-либо внешних возмущений удается сохранить ламинарный режим при Rе, заметно превышающих 2300. Наоборот, при неблагоприятных условиях входа (наличии вибрации, турбулизующих вставок, шероховатости стенок кана­ла) течение становится турбулентным при Rе значительно ниже 104.

Особенно сильное влияние внешние условия оказывают на течение в переходном режиме — его характеристики могут смещаться в сторону ламинарного либо турбулентного. В этом смысле переходный режим плохо воспроизводится, так что рас­четные формулы для различных эффектов переноса в переходном режиме (не только в гидравлике, в тепло- и массообменных процессах — тоже) обычно весьма ненадежны и пригодны лишь для определения качественных связей между различными фак­торами и приближенной оценки численных значений характе­ристик процесса.

Физические предпосылки возникновения и поддержания ламинарного или турбулентного режима можно представить сле­дующим образом. В жидкостном потоке под влиянием постоянно действующих случайных возмущений непрерывно возникают отклонения от характерных (для данного течения) параметров движения жидкости. Но при доминировании сил вязкости упомянутые отклонения подавляются, и движение остается упорядоченным, т.е. ламинарным. Этого не происходит, когда преобладают силы инерции: возникшие возмущения здесь развиваются, распространяются по объему потока движение становится неупорядоченным, т.е. турбулентным.

Переход к неупорядоченному течению стимулируется внешними (по отношению к потоку жидкости) причинами: преградами в канале, шероховатостью его стенок, вибрацией каналов и т.п.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]