Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
biologia_2_zachet_1_1_1.docx
Скачиваний:
354
Добавлен:
25.03.2015
Размер:
85.75 Кб
Скачать

14. Взаимодействие генов в детерминации признаков. Виды взаимодействия генов.

Взаимодействие аллельных генов в генотипе (в зависимости от фенотипического эффекта): доминирование, неполное доминирование, кодоминирование, межаллельная комплементация, аллельное исключение.

Доминирование — это такое взаимодействие аллельных генов, при котором проявление одного из аллелей (А) не зависит от присутствия в генотипе другого аллеля (А') и гетерозиготы АА' фенотипически не отличаются от гомозигот по этому аллелю (АА). При неполном доминировании гибриды первого поколения имеют фенотип промежуточный между фенотипами родителей; у гибридов второго поколения расщепление 1:2:1 и по фенотипу, и по генотипу, поскольку каждому генотипу соответствует свой фенотип; расщепление по признаку окрашенный: неокрашенный равно 3:1. Демонстрацией неполного доминирования могут быть наследственные заболевания у человека, проявляющиеся клинически у гетерозигот по мутантным аллелям, а у гомозигот заканчивающиеся смертью (серповидно-клеточная анемия). Иногда гетерозиготы имеют почти нормальный фенотип, а гомозиготы характеризуются пониженной жизнеспособностью.

Кодоминирование - вид взаимодействия аллельных генов, когда на уровне конечного признака в фенотипе проявляются продукты обоих генов (например, формирование признака IV (АВ) группы крови у человека).

Межаллельная комплементация – вид взаимодействия аллельных генов, когда за счет образования гибридного белка у гетерозиготы восстанавливается нормальный фенотип. Такое явление может возникнуть в том случае, если оба аллельных гена мутантны, но мутация в разных участках генов.

Аллельное исключение – вид взаимодействия аллельных генов, когда один из аллельных генов (субгенов или целая хромосома) из пары не работает – продукт гена не образуется (например, выключение субгена при синтезе антител или гетерохроматинизация одной из Х-хромосом у женщин).

Виды взаимодействия неаллельных генов: модифицирующее влияние, комплементарность, эпистаз, эффект положения гена.

Модифицирующее влияние – это вид взаимодействия неаллельных генов, когда продукт одной пары генов модифицирует (изменяет) фенотипический эффект другой пары генов. Гены-модификаторы влияют на пенетрантность или экспрессивность другого гена. Ген-модификатор в системе групп крови АВО(Н): наличие А, В или Н-антигенов в слюне (и других секретах) зависит от секреторного гена Se (расположен в 19 хро-ме). Секреторы: SeSe, Sese. Несекреторы: sese. Например: АВSeSe, ABSese – в слюне обнаруживаются антигены А и В. АВsese – в слюне не обнаруживаются антигены А и В. ООSese – в слюне обнаруживается антиген Н.

Комплементарность - вид взаимодействия неаллельных доминантных генов, в результате которого формируется новый конечный признак.

А и В –комплементарные гены, обусловливают развитие нормального слуха.

Р АаВв х АаВв

норм.сл норм.сл

F АВ Ав аВ ав

9 : 3 : 3 : 1

норм.сл. г л у х о н е м о т а

Эпистаз – это вид взаимодействия неаллельных генов, когда аллель из одной пары генов подавляет (усиливает) фенотипический эффект другой пары генов. При доминантном эпистазе, когда доминантный аллель одного гена (А) препятствует проявлению другого гена (В или b), расщепление в потомстве зависит от их фенотипического значения и может выражаться соотношением 12:3:1 или 13:3. При рецессивном эпистазе ген, определяющий какой-то признак (В), не проявляется у гомозигот по рецессивному аллелю другого гена (аа). Расщепление в потомстве двух дигетерозигот по таким генам будет соответствовать соотношение 9:3:4.

Эффект положения гена - фенотипический эффект гена зависит от соседних генов. Если ген в результате перекомбинации генов окажется в зоне гетерохроматина, его активность будет снижена.

Общая характеристика взаимодействия: а) аллельных генов, б) неаллельных генов.

15. Закономерности сцепленного наследования признаков. Группы сцепления. (Цис- и транс-фазы сцепления генов. Полное и неполное сцепление. Кроссинговер, его генетический эффект. Синтенные гены. Выявление сцепления по результатам анализирующего скрещивания. Применение результатов по тесному сцеплению генов для целей медико-генетического консультирования. Генетические карты хромосом человека.)

При сцепленном наследовании неаллельные гены расположены в одной паре гомологичных хромосом. Каждая хромосома представляет собой группу сцепления генов. Число групп сцепления у диплоидного организма равно гаплоидному набору хромосом (у женщин – 23 Г.С., у мужчин – 24).

Фазы сцепления генов:

Цис-фаза А В Гаметы: АВ и ав а в 50% 50%

Если гены находятся в цис-фазе (оба доминантных гена локализованы в одной хромосоме, а их рецессивные аллели – в другой): гаметы АВ и аb (по 50%), генотип потомства АаВb и ааbb (по 50%).

Транс-фаза А в Гаметы: Ав и аВ

а В 50% 50%

Если гены находятся в транс-фазе (один доминантный ген локализован в одной хромосоме, а другой в гомологичной ей): типы гамет – Аb и аВ (по 50%), генотип потомства Ааbb, aaBb (по 50%).

Полное сцепление – кроссинговер не происходит. Сцепленные гены всегда наследуются вместе. Примеры: гены рРНК от 40 до 50 копий в каждой ядрышкообразующей хромосоме.

Неполное сцепление – кроссинговер происходит, частота кроссинговера зависит от расстояния между сцепленными генами: тесное сцепление – кроссинговер происходит редко, гены чаще наследуются вместе, примеры: гены Rh-комплекса (СДЕ) в 1 хромосоме, гены HLA-комплекса (АВСД) в 6 хромосоме; синтенное сцепление – кроссинговер происходит часто между генами, далеко расположенными друг от друга в большой хромосоме (синтенные гены), синтенные гены наследуются практически независимо.

Причина нарушения сцепления – кроссинговер – обмен гомологичных хромосом гомологичными районами, происходит в профазе I мейоза. Частота нарушения сцепления постоянна для каждой пары сцепленных генов. Кроссинговер у женщин происходит чаще, чем у мужчин. Биологическое значение кроссинговера – увеличивает комбинативную изменчивость. При неполном сцеплении у дигетерозиготы образуется 4 типа гамет и 4 фенотипических класса в потомстве в неравных количественных отношениях (причем кроссоверных особей-рекомбинант всегда меньше). Гаметы: АВ и ав – некроссоверные, их образуется больше, Ав и аВ – кроссоверные, их образуется меньше. При слиянии кроссоверных гамет образуются рекомбинанты (особи, у которых генетическая информация перекомбинирована). Процентное соотношение особей, образующихся при слиянии кроссоверных гамет, зависит от расстояния между генами. Сила сцепления между генами обратно пропорциональна расстоянию между ними. За единицу расстояния между генами принята условная единица – морганида. 1 морганида соответствует расстоянию в хромосоме, на котором кроссинговер происходит в 1% гамет. При расстоянии между генами в 50 и более морганид признаки наследуются независимо. Кроссинговер может быть одиночным, двойным (множественным). Частота кроссинговера используется для картирования хромосом (определения порядка расположения генов в хромосоме и относительного расстояния между ними).

Сцепленное наследование отличается от независимого количественным соотношением гамет у потомков, что выявляется при анализирующем дигибридном скрещивании.

Эффект положения генов – изменение фенотипического эффекта генов при их тесном сцеплении. Rh-комплекс (СDЕ, сdе) – выявляются антигены: С, D, Е, с, d, е. Антиген-D самый сильный, он определяет положительный резус. Все остальные – отрицательный.

Генотипы:

CDe - гены С и D сцеплены в цис-фазе, при этом активность гена D снижена геном С

cde и кровь дает слабо положительную реакцию, т.к. мало D-антигена.

Cde - гены С и D сцеплены в транс- фазе. Ген С не оказывает влияния на активность

cDe гена D и кровь дает нормальную положительную реакцию

Генетическая карта хромосомы – схема взаимного расположения генов, находящихся в одной группе сцепления. Расстояние между генами на генетической карте хромосомы определяют по частоте кроссинговера между ними.

Соседние файлы в предмете Биология