
- •Характеристики сократительной активности гладкой мышцы
- •Раздражители гладких мышц
- •Глава 4
- •Физиологическая роль структурных элементов миелинизированного нервного волокна
- •Перерождение нервных волокон после перерезки нерва
- •Законы проведения возбуждения в нервах
- •Проведение возбуждения в немиелинизированных и миелинизированных нервных волокнах
- •Составной характер потенциала действия нервного ствола и классификации нервных волокон
- •Свойства различных нервных волокон теплокровных
- •Исследование скорости проведения возбуждения по нервным волокнам у человека
- •Химические изменения в нерве в покое и при проведении возбуждения
- •Теплопродукция нерва
- •Утомление нерва
- •Нервно-мышечная передача
- •Нервно-мышечное соединение (синапс)
- •2) Возбуждение проводится через синапс значительно медленнее, чем по нервному волокну.
Раздражители гладких мышц
Один из важных физиологически адекватных раздражителей гладких мышц — их быстрое и сильное растяжение. Оно вызывает деполяризацию мембраны мышечного волокна и возникновение серии распространяющихся потенциалов действия. В результате мышца сокращается. Это свойство гладких мышц реагировать на растяжение активным сокращением имеет большое значение для осуществления нормальной физиологической деятельности многих гладкомышечных органов, в частности кишечника, мочеточника и других полых органов.
Характерной особенностью гладких мышц является их высокая чувствительность к некоторым химическим раздражителям, в частности к ацетилхолину, адреналину и норадреналину, гистамину, серотонину, брадикинину, простагландинам. Эффекты, вызываемые одним и тем же химическим агентом в разных гладких мышцах или при различном их состоянии, могут быть неодинаковы. Так, наряду с тем, что ацетилхолин возбуждает гладкомышечные волокна большинства органов, он оказывает тормозящее действие на гладкие мышцы сосудов. Адреналин вызывает расслабление небеременной матки кролика и сокращение ее во время беременности. Эти различия связаны с тем, что указанные агенты по-разному изменяют ионную проницаемость и соответственно мембранный потенциал различных гладкомышечных клеток.
В тех случаях, когда раздражающий агент вызывает деполяризацию мембраны, возникает возбуждение; наоборот, гиперполяризация мембраны под влиянием химического агента приводит к торможению активности и, следовательно, расслаблению гладкой мышцы.
Механизм действия указанных биологически активных соединений на гладкую мышцу заключается, по-видимому, в следующем. Поверхностная мембрана гладких мышц не только в синаптической, но и во внесинаптических областях содержит специфические хеморецепторы, обладающие высоким сродством к биологически активным соединениям. Многие из этих рецепторов структурно связаны с ионными («хемовозбудимыми») каналами, открывающимися или закрывающимися при взаимодействии рецептора и соответствующим химическим соединением. Характер ответа на вещество зависит от ионной селективности активируемого канала: открывание кальциевых или натриевых каналов ведет к деполяризации мембраны, а открывание калиевых каналов вызывает гиперполяризацию. Некоторые хеморёцёпторы связаны с мембранными ферментами — аденилциклазой или гуанилатциклазой. Активация этих ферментов усиливает синтез в клетках циклических нуклеотидов — цАМФ или цГМФ. Указанные соединения
выполняют в клетке многие физиологически важные функции, в том числе активацию и регуляцию состояния электровозбудимых кальциевых каналов в поверхностной мембране.
Гладкие мышцы иннервируются парасимпатическими и симпатическими нервами, которые, как правило, оказывают противоположное влияние на мышечные волокна.
Глава 4
ПРОВЕДЕНИЕ НЕРВНОГО ИМПУЛЬСА
И НЕРВНО-МЫШЕЧНАЯ ПЕРЕДАЧА
ПРОВЕДЕНИЕ НЕРВНОГО ИМПУЛЬСА
СТРУКТУРА НЕРВНЫХ ВОЛОКОН
Проведение нервных импульсов является специализированной функцией нервных волокон, т. е. отростков нервных клеток.
Нервные волокна разделяют на мякотные, или миелинизированные, и безмякотные, немиелинизированные. Мякотные, чувствительные и двигательные волокна входят в состав нервов, снабжающих органы чувств и скелетную мускулатуру; они имеются также в вегетативной нервной системе. Безмякотные волокна у позвоночных животных принадлежат в основном симпатической нервной системе.
Нервы обычно состоят как из мякотных, так и из безмякотных волокон, причем соотношение между числом тех и других в разных нервах различное. Например, во многих кожных нервах преобладают безмякотные нервные волокна. Так, в нервах вегетативной нервной системы, например в блуждающем нерве, количество безмякотных волокон достигает 80—95 %. Наоборот, в нервах, иннервирующих скелетные мышцы, имеется лишь относительно небольшое количество безмякотных волокон.
На рис. 42 схематически показано строение миелинизированного нервного волокна. Как видно, оно состоит из осевого цилиндра и покрывающей его миелиновой оболочки. Поверхность осевого цилиндра образована плазматической мембраной, а его содержимое представляет собой аксоплазму, пронизанную тончайшими (диаметром 10—40 нм) нейрофибриллами (и микротубулами), между которыми находится большое количество митохондрий и микросом. Диаметр нервных волокон колеблется от 0,5 до 25 мкм.
Как показали электронно-микроскопические исследования, миелиновая оболочка создается в результате того, что миелоцит (шванновская клетка) многократно обертывает осевой цилиндр (рис. 43, I), слои ее сливаются, образуя плотный жировой футляр — миелиновую оболочку. Миелиновая оболочка через промежутки равной длины прерывается, оставляя открытыми участки мембраны шириной примерно 1 мкм. Эти участки получили название перехватов (перехваты Ранвье).
Длина межперехватных участков, покрытых миелиновой оболочкой, примерно пропорциональна диаметру волокна. Так, в нервных волокнах, имеющих диаметр 10— 20 мкм, длина промежутка между перехватами составляет 1—2 мм. В наиболее тонких волокнах (диаметром 1—2 мкм) эти участки имеют длину около 0,2 мм.
Безмякотные нервные волокна не имеют миелиновой оболочки, они изолированы друг от друга только шванновскими клетками. В простейшем случае одиночный миелоцит окружает одно безмякотное волокно. Часто, однако, в складках миелоцита оказывается несколько тонких безмякотных волокон (рис. 43. II).
Рис. 43. Роль миелоцита (шванновской клетки) в образовании миелиновой оболочки в мякотных нервных волокнах. Показаны последовательные стадии спиралеобразного закручивания миелоцита вокруг аксона (I). Взаимное расположение миелоцитов и аксонов в безмякотных нервных волокнах (II).