
- •Взаимодействие интракардиальных и экстракардиальных нервных регуляторных механизмов
- •Тонус центров, регулирующих деятельность сердца
- •Условнорефлекторная регуляция сердечной деятельности
- •Гуморальная регуляция сердечной деятельности
- •Артериальный пульс
- •Объемная скорость кровотока
- •Движение крови в венах
- •Время кругооборота крови
- •Регуляция движения крови по сосудам
- •Центральные механизмы регуляции кровообращения
- •Иннервация сосудов
- •Сосудодвигательный центр
- •Рефлекторная регуляция сосудистого тонуса
- •Гуморальные влияния на сосуды
- •Регуляция объема циркулирующей крови
- •Кровяные депо
- •Местные механизмы регуляции кровообращения
- •Легочное кровообращение
- •Лимфа и ее движение
- •Состав и свойства лимфы
- •Образование лимфы
- •Механизмы передвижения лимфы
Условнорефлекторная регуляция сердечной деятельности
Тот факт, что различные эмоции вызывают изменение сердечной деятельности, указывает на значение коры полушарий большого мозга в регуляции деятельности сердца. Доказательством этого является то, что изменения ритма и силы сердечных сокращений можно наблюдать у человека при одном упоминании или воспоминании о факторах, вызывающих у него определенные эмоции.
Наиболее убедительные данные о наличии корковой регуляции деятельности сердца получены методом условного рефлекса. Если какой-нибудь, например звуковой, раздражитель сочетать многократно с надавливанием на глазное яблоко, вызывающим уменьшение частоты сердечных сокращений, то затем один этот раздражитель вызывает уроженце сердечной деятельности — условный глазосердечный рефлекс.
Условнорефлекторные реакции лежат в основе тех явлений, которые характеризуют так называемое предстартовое состояние спортсменов. Перед соревнованием у них наблюдаются изменения дыхания, обмена веществ, сердечной деятельности такого же характера, как и во время самого соревнования. (У конькобежцев на старте сердечная деятельность учащается на 22—35 сокращений в минуту).
Кора мозга обеспечивает приспособительные реакции организма не только к текущим, но и к будущим событиям. По механизму условных рефлексов сигналы, предвещающие наступление этих событий или значительную вероятность их возникновения, могут вызвать перестройку функций сердца и всей сердечно-сосудистой системы в той мере, в какой это необходимо, чтобы обеспечить предстоящую деятельность организма.
При чрезвычайно сложных ситуациях (действие «чрезвычайных раздражителей», по И. П. Павлову) возможны нарушения и срывы этих корковых высших регуляторных механизмов (неврозы по И. П. Павлову). При этом наряду с расстройствами поведенческих реакций (и невротическими изменениями психологического статуса человека) могут появиться и значительные нарушения деятельности сердца и сердечно-сосудистой системы. В некоторых случаях эти нарушения могут закрепиться по типу патологических условных рефлексов. При этом нарушения сердечной деятельности могут возникнуть при действии одних лишь условных сигналов.
Гуморальная регуляция сердечной деятельности
Изменения деятельности сердца наблюдаются и при действии на него ряда биологически активных веществ, циркулирующих в крови.
Катехоламины (адреналин, норадреналин) резко увеличивают силу и учащают ритм сердечных сокращений, что имеет важное биологическое значение. При резких физических нагрузках или состоянии эмоционального напряжения мозговой слой надпочечников выбрасывает в кровь большие количества адреналина. Это приводит к резкому усилению сердечной деятельности, крайне необходимому в данных условиях.
Указанный эффект возникает в результате стимуляции катехоламинами (3-рецепто-ров миокарда, вызывающей активацию внутриклеточного фермента аденилатциклазы, которая ускоряет . реакцию образования 3,5-циклического аденозинмонофосфата (цАМФ). цАМФ активирует фосфорилазу, вызывающую расщепление внутримышечного гликогена и образование глюкозы (источника энергии для сокращающегося миокарда). Кроме того, фосфорилаза необходима для активации ионов Са^— агента, реализующего сопряжение возбуждения и сокращения в миокарде (это также усиливает положительное инотропное действие катехоламинов). Помимо этого, катехоламины повышают проницаемость клеточных мембран для ионов Ca:г+, способствуя, с одной стороны, усилению поступления их из межклеточного пространства в клетку, а с другой — мобилизации ионов Ca'2+ из внутриклеточных депо. Активация аденилатциклазы отмечается в миокарде и при действии глюкагона — гормона, выделяемого «-клетками островков поджелудочной железы, что также вызывает положительный инотропный эффект. Гормоны коры надпочечников, ангиотензин и серо-тонин также увеличивают силу сокращений миокарда, а тироксин учащает сердечный ритм. Гипоксемия, гиперкапния и ацидоз угнетают сократительную активность миокарда.
КРОВЕНОСНЫЕ СОСУДЫ
ОСНОВНЫЕ ПРИНЦИПЫ ГЕМОДИНАМИКИ
Наука, изучающая движение крови в сосудистой системе, получила название гемо-динамики. Она является частью гидродинамики — раздела физики, изучающего движение жидкостей.
Согласно законам гидродинамики, количество жидкости Q, протекающее через любую трубу, прямо пропорционально разности давлений в начале (Pi) и в конце {Рг) трубы и обратно пропорционально сопротивлению (R) току жидкости:
Если применить это уравнение к сосудистой системе человека, то следует иметь в виду, что давление в конце данной системы, т. е. в месте впадения полых вен в сердце, близко к нулю. В этом случае уравнение можно записать так:
где: Q — количество крови, изгнанное сердцем в минуту; Р — величина среднего давления в аорте; R — величина сосудистого сопротивления.
Из этого уравнения следует, что P=Q-R, т.е. давление (Р) в устье аорты прямо пропорционально объему крови, выбрасываемому сердцем в артерии в минуту (Q) и величине периферического сопротивления (R). Давление в аорте (Р) и минутный объем сердца (Q) можно измерить непосредственно. Зная эти две величины, вычисляют периферическое сопротивление — важнейший показатель состояния сосудистой системы.
Периферическое сопротивление сосудистой системы складывается из множества отдельных сопротивлений каждого сосуда. Любой из таких сосудов можно уподобить трубке, сопротивление которой (R) определяется по формуле Пуазейля:
где I — длина трубки; v — вязкость протекающей в ней жидкости; я — отношение окружности к диаметру; г — радиус трубки.
Сосудистая система состоит из множества отдельных трубок, соединенных параллельно и последовательно. При последовательном соединении трубок их суммарное сопротивление равно сумме сопротивлений каждой трубки:
При параллельном соединении трубок их суммарное сопротивление вычисляют по формуле:
Точно определить сопротивление сосудов по этим формулам невозможно, так как геометрия сосудов изменяется вследствие сокращения сосудистых мышц. Вязкость крови также не является величиной постоянной. Например, если кровь протекает через сосуды диаметром меньше 1 мм, вязкость крови значительно уменьшается. Чем меньше диаметр сосуда, тем меньше вязкость протекающей в нем крови. Это связано с тем, что в крови наряду с плазмой имеются форменные элементы (эритроциты и др.), которые располагаются в центре потока. Пристеночный слой представляет собой плазму, вязкость которой намного меньше вязкости цельной крови. Чем тоньше сосуд, тем большую часть площади его поперечного сечения занимает слой с минимальной вязкостью, что уменьшает общую величину вязкости крови. Теоретический расчет сопротивления капилляров невозможен, так как в норме открыта только часть капиллярного русла, остальные капилляры являются резервными и открываются по мере усиления обмена веществ в тканях.
Из приведенных уравнений видно, что наибольшей величиной сопротивления должен обладать капилляр, диаметр которого 5—7 мкм. Однако огромное количество капилляров включено в ток крови параллельно. Поэтому их суммарное сопротивление меньше, чем суммарное сопротивление артериол.
Основное сопротивление току крови возникает в артериолах. Систему артерий и артериол называют сосудами сопротивления, или резистивными сосудами.
Артериолы представляют собой тонкие сосуды (диаметром от 15 до 70 мкм). Стенка этих сосудов содержит толстый слой кольцевой гладкой мускулатуры, при сокращении которой просвет сосуда может значительно уменьшаться, что резко повышает сопротивление артериол. Изменение сопротивления артериол меняет уровень давления крови в артериях. При увеличении сопротивления артериол отток крови из артерий уменьшается, кровь задерживается в артериях и давление в них повышается. Падение тонуса артериол увеличивает отток крови из артерий, что приводит к уменьшению артериального давления. Наибольшим сопротивлением среди всех участков сосудистой системы обладают именно артериолы. Поэтому изменение их просвета является главным регулятором уровня общего артериального давления. Артериолы — «краны сердечно-сосудистой системы» (И. М. Сеченов). Открытие этих «кранов» увеличивает отток крови в капилляры соответствующей области, улучшая местное кровообращение, а закрытие резко ухудшает кровообращение данной сосудистой зоны.
Итак, артериолы играют двоякую роль: участвуют в поддержании необходимого организму уровня общего артериального давления и в регуляции величины местного кровотока через тот или иной орган или ткань. Величина органного кровотока соответствует потребности органа в кислороде и питательных веществах, определяемой уровнем рабочей активности органа.
В работающем органе тонус артериол уменьшается, что обеспечивает повышение притока крови. Чтобы общее артериальное давление при этом не снизилось в других (неработающих) органах, тонус артериол повышается. Суммарная величина общего периферического сопротивления (и общий уровень артериального давления) остаются примерно постоянными несмотря на непрерывное перераспределение крови между работающими и неработающими органами.
О сопротивлении в различных сосудах можно судить по разности давления крови в начале и в конце сосуда: чем выше сопротивление току крови, тем большая сила затрачивается на ее продвижение по сосуду и, следовательно, тем значительнее падение давления на протяжении данного сосуда. Как показывают прямые измерения давления крови в разных сосудах, давление на протяжении крупных и средних артерий падает всего на 10 %, а в артериолах и капиллярах — на 85 %. Это означает, что 10 % энергии, затрачиваемой желудочками на изгнание крови, расходуется на продвижение крови в крупных и средних артериях, а 85 % — на продвижение крови в артериолах и капиллярах. Распределение давления в разных отделах сосудистого русла показано на рис. 134.
Зная
объемную скорость кровотока, измеряемую
в миллилитрах в секунду, можно рассчитать
линейную скорость кровотока, которая
выражается в сантиметрах в секунду.
Штриховкой обозначено колебание давления в систолу и диастолу, пунктиром — среднее давление, 1 — давление в аорте; 2 — в крупных артериях; 3 — в мелких артериях:
4 — в артериолах; 5 — п капиллярах; 6 — в венулах; 7 — в венах; 8 - в полой вене.
Линейная скорость (V} отражает скорость продвижения частиц крови вдоль сосуда и равна объемной (Q), деленной на площадь сечения кровеносного сосуда:
Линейная скорость, вычисленная по этой формуле, есть средняя скорость. В действительности линейная скорость различна для частиц крови, продвигающихся в центре потока (вдоль продольной оси сосуда) и у сосудиетой стенки. В центре сосуда линейная скорость максимальная, а около стенки сосуда она минимальная в связи с тем, что здесь особенно велико трение частиц крови о стенку.
Объем крови, протекающей в 1 мин через аорту или полые вены и через легочную артерию или легочные вены, одинаков. Отток крови от сердца соответствует ее притоку. Из этого следует, что объем крови, протекший в 1 мин через всю артериальую систему" или все артериолы, через все капилляры или всю венозную систему как большого, так и малого круга кровообращения, одинаков. При постоянном объеме крови, протекающей через любое общее сечение сосудистой системы, линейная скорость кровотока не может быть постоянной. Она зависит от общей ширины данного отдела сосудистого русла. Это и следует из уравнения, выражающего соотношение линейной и объемной скорости: чем больше общая площадь сечения сосудов, тем меньше линейная скорость кровотока. В кровеносной системе самым узким местом является аорта. При разветвлении артерий, несмотря на то что каждая ветвь сосуда уже той, от которой она произошла, наблюдается увеличение суммарного русла, так как сумма просветов артериальных ветвей больше просвета разветвившейся артерии. Наибольшее расширение русла отмечается в капиллярной сети: сумма просветов всех капилляров примерно в 500—600 раз больше просвета аорты. Соответственно этому кровь в капиллярах движется в 500—600 раз медленнее, чем в аорте.
Аорта
Артерии Артериолы Капилляры Вены
Рис.
135.
Изменение линейной скорости тока крови
в разных частях сосудистой системы.
Обусловливают непрерывный ток крови по всей сосудистой системе резко выраженные упругие свойства аорты и крупных артерий.
В сердечно-сосудистой системе часть кинетической энергии, развиваемой сердцем во время систолы, затрачивается на растяжение аорты и отходящих от нее крупных артерий. Последние образуют эластическую, или компрессионную, камеру, в которую поступает значительный объем крови, растягивающий ее; при этом кинетическая энергия, развитая сердцем, переходит в энергию эластического напряжения артериальных стенок. Когда систола заканчивается, растянутые стенки артерий стремятся спадаться и проталкивают кровь в капилляры, поддерживая кровоток во время диастолы.
ДВИЖЕНИЕ КРОВИ ПО СОСУДАМ
Артериальное давление крови
Измерение давления в артериях у животного, а иногда и у человека производят путем введения в артерию стеклянной канюли или иглы, соединенной с манометром трубкой с жесткими стенками. Чтобы кровь в канюле и соединительной трубке не свертывалась, их заполняют раствором противосвертывающего вещества.
Кроме этого прямого (кровавого) способа, применяют косвенные, или бескровные. Они основываются на измерении давления, которому нужно подвергнуть стенку данного сосуда извне, чтобы прекратить по нему ток крови. Для такого исследования применяют сфигмоманометр Рива-Роччи. Обследуемому накладывают на плечо полую резиновую манжетку, которая соединена с резиновой грушей, служащей для нагнетания воздуха, и с манометром. При надувании манжета сдавливает плечо, а манометр показывает величину этого давления. Для измерения давления крови с помощью этого прибора, по предложению Н. С. Короткова, выслушивают сосудистые тоны, возникающие в артерии к периферии от наложенной на плечо манжеты.
В несдавленной артерии звуки при движении крови обычно отсутствуют. Если поднять давление в манжете выше уровня систолического артериального давления, то манжета полностью перекрывает просвет артерии и кровоток в ней прекращается. Звуки при этом отсутствуют. Если теперь постепенно выпускать воздух из манжеты (т. е. создавать декомпрессию), то в момент, когда давление в ней станет чуть ниже уровня систолического артериального, кровь при систоле преодолевает сдавленный участок и прорывается за манжету. Удар о стенку артерии порции крови, движущейся с большой скоростью и кинетической энергией через сдавленный участок, порождает звук, слышимый ниже манжеты. То давление в манжете, при котором появляются первые звуки в артерии, соответствует максимальному, т. е. систолическому, давлению. При дальнейшем снижении давления в манжете наступает момент, когда оно становится ниже диастоли-ческого, кровь начинает проходить по артерии как во время систолы, так и во время диастолы. В этот момент звуки в артерии ниже манжеты исчезают. По величине давления в манжете в момент исчезновения звуков в артерии судят о величине минимального, т. е. диастолического, давления. При сопоставлении величины давления в артерии, определенные по способу Короткова и зарегистрированные у этого же человека путем введения в артерию иглы, соединенной с электроманометром, совпадают.
Давление крови в артериях не является постоянным: оно непрерывно колеблется от некоторого среднего уровня. На кривой артериального давления эти колебания имеют различный вид.
Волны первого порядка (пульсовые) самые частые, зависят от силы и частоты сокращений сердца. Во время каждой систолы некоторое количество крови поступает в артерии и увеличивает их эластическое растяжение, давление в них повышается. Во время диастолы поступление крови из желудочков в артериальную систему прекращается и происходит только отток крови из крупных артерий; растяжение их стенок уменьшается и давление снижается. Колебания давления распространяются от аорты и легочной артерии на все их разветвления, постепенно затухая. Наибольшая величина давления в артериях, наблюдающаяся во время систолы, характеризует максимальное, или систолическое, давление. Величина давления во время диастолы отражает минимальное, или диастоли-ческое, давление. Разность между систолическим и диастолическим давлением, т. е. амплитуда колебаний давления, называется пульсовым давлением. Пульсовое давление при прочих равных условиях пропорционально количеству крови, выбрасываемой сердцем при каждой систоле.
В мелких артериях пульсовое давление уменьшается и, следовательно, разница между систолическим и диастолическим давлением сглаживается. В артериолах и капиллярах пульсовые волны артериального давления отсутствуют; давление в них является постоянным и не изменяется во время систолы и диастолы.
Кроме систолического, диастолического и пульсового артериального давления, определяют так называемое среднее артериальное давление.
Оно представляет собой ту среднюю величину давления, при котором в отсутствие пульсовых колебаний наблюдается такой же гемодинамический эффект, как и при естественном колеблющемся давлении крови.
Продолжительность понижения диастолического давления больше, чем повышений систолического, поэтому среднее давление ближе к величине диастолического давления. Среднее давление представляет собой более постоянную величину в одной и той же артерии, а систолическое и диастолическое очень изменчивы.
Кроме пульсовых колебаний, на кривой артериального давления наблюдаются волны второго порядка, совпадающие с дыхательными движениями; поэтому их называют дыхательными волнами: вдох сопровождается понижендем артериального давления, а выдох — повышением.
В некоторых случаях на кривой артериального давления отмечаются волны третьего порядка. Это еще более медленные повышения и понижения давления, каждое из которых охватывает несколько дыхательных волн второго порядка. Указанные волны обусловлены периодическими изменениями тонуса сосудодвигательных центров. Они наблюдаются чаще всего при недостаточном снабжении мозга кислородом, например при подъеме на высоту, после кровопотери или отравлениях некоторыми ядами.
У взрослого человека среднего возраста систолическое давление при прямых измерениях равно в аорте 110—125 мм рт. ст. Значительное снижение давления происходит в мелких артериях, в артериолах. Здесь давление резко уменьшается, становясь на артериальном конце капилляра равным 20—30 мм рт. ст.
В клинической практике артериальное давление определяют обычно в плечевой артерии. У здоровых людей в возрасте от 15 до 50 лет максимальное давление, измеренное способом Короткова, составляет 110—125 мм рт. ст. В возрасте старше 50 лет оно, как правило, повышается. У 60-летних максимальное давление равно в среднем 135—140 мм рт. ст. У новорожденных максимальное артериальное давление 50 мм рт. ст., но уже через несколько дней становится 70 мм рт. ст. и к концу 1-го месяца жизни 80 мм рт. ст.
Минимальное артериальное давление у здоровых людей среднего возраста в плечевой артерии в среднем равно 60—80 мм рт. ст., пульсовое составляет 35—50 мм рт. ст., а среднее 90—95 мм рт. ст.