
- •1.Дайте определение вектора и его координат
- •2.Расскажите о линейных операциях над векторами.
- •1) Сложение векторов
- •2. Умножение векторов на число
- •3.Дайте определение скалярного произведения векторов. Расскажите о его свойствах.
- •4.Дайте определение векторного произведения и расскажите о его свойствах.
- •5.Дайте определение смешанного произведения и расскажите о его свойствах.
- •6.Объясните, что такое система координат. Какие вы знаете системы координат?
- •7.Что такое общее уравнение прямой? Что можно узнать о прямой по ее уравнению?
- •8.Как находится расстояние от точки до прямой?
- •9.Каковы условия параллельности и перпендикулярности прямых?
- •10.Что такое общее уравнение плоскости в пространстве? Что можно узнать о плоскости по ее уравнению?
- •11.Угол между плоскостями. Условия их параллельности и перпендикулярности. Расстояние от точки до плоскости.
- •12.Как задается прямая в пространстве? Что такое ее канонические уравнения?
- •13.Угол между прямыми, их параллельность и перпендикулярность.
- •14. Что такое кривые второго порядка?
- •15.Напишите канонические уравнения окружности, эллипса, гиперболы и параболы. Как они выглядят?
- •16.Что такое поверхности 2-го порядка?
- •17.Напишите уравнения сферы и обоих параболоидов. Как они выглядят?
- •18.Что такое числовая последовательность? Приведите примеры.
- •19.Что такое неперово число е? Каково его приближенное значение?
- •20.Что такое предел последовательности? Приведите примеры.
- •21.Что такое график функции? Нарисуйте графики основных элементарных функций.
- •22.Что такое предел функции? Приведите примеры.
- •23.Что такое 1-й замечательный предел?
- •24.Что такое 2-й замечательный предел?
- •25.Расскажите о методах вычисления пределов основных типов. Приведите примеры.
- •26.Дайте определение непрерывной функции. Приведите примеры.
- •Элементарные функции
- •(28)77.Что такое линейная система уравнений? Какие системы называют равносильными? Примеры.
- •(29)78.Что такое элементарные преобразования?
- •(30)79.Что такое ступенчатая система? Примеры.
- •(31)80.Как произвольная линейная система приводится к ступенчатому виду? Рассмотрите пример.
- •(32)81.Как по Гауссу решается ступенчатая линейная система? Пример.
- •(33)82.Как устроено множество решений линейной системы уравнений? Примеры.
- •(34)83.Что такое главные и свободные неизвестные системы? Примеры.
- •(35)84.Что такое прямоугольные и квадратные матрицы? Примеры.
- •(36)85.Что такое линейные операции над матрицами? Примеры.
- •(37)86.Что такое произведение двух матриц? При каких условиях оно определено? Примеры.
- •(38)87.Какие операции называют коммутативными? Покажите на примерах, что умножение матриц не коммутативно.
- •(39)88.Что такое единичная и обратная матрицы? Как строится (по Гауссу) обратная матрица?
- •(40)89.Что такое обратимая матрица? Условия обратимости.
- •(41)90.Определение определителя. Пример его вычисления.
- •(42)91.Как меняется определитель под действием элементарных преобразований?
- •(43)92.Что такое треугольный определитель? Как он вычисляется?
(35)84.Что такое прямоугольные и квадратные матрицы? Примеры.
Матрицей называется прямоугольная таблица чисел, состоящая из m одинаковой длины строк или n одинаковой длины столбцов.
aij- элемент матрицы, который находится в i-ой строке и j-м столбце.
Для краткости матрицу можно обозначать одной заглавной буквой, например, А или В.
В общем виде матрицу размером m×n записывают так
.
Примеры:
Если в матрице число строк равно числу столбцов, то матрица называется квадратной, причём число ее строк или столбцов называется порядком матрицы. В приведённых выше примерах квадратными являются вторая матрица – её порядок равен 3, и четвёртая матрица – её порядок 1.
Матрица, в которой число строк не равно числу столбцов, называется прямоугольной. В примерах это первая матрица и третья.
Главной диагональю квадратной матрицы назовём диагональ, идущую из левого верхнего в правый нижний угол.
Квадратная матрица, у которой все элементы, лежащие ниже главной диагонали, равны нулю, называется треугольной матрицей.
.
Квадратная
матрица, у которой все элементы, кроме,
быть может, стоящих на главной диагонали,
равны нулю, называется диагональной матрицей.
Например, или
.
Диагональная
матрица, у которой все диагональные
элементы равны единице,
называется единичной матрицей
и обозначается буквой E. Например,
единичная матрица 3-го порядка имеет
вид .
↑ назад в содержание ↑
(36)85.Что такое линейные операции над матрицами? Примеры.
Во всех случаях, когда вводятся новые математические объекты, необходимо договариваться о правилах действийнад ними, а также определить - какие объекты считаются равнымимежду собой.
Природа объектов не имеет никакого значения. Это могут быть вещественные или комплексные числа, векторы, матрицы, строки или что-то иное.
К числу стандартных действий относятся линейные операции, а именно: умножение на число и сложение; в данном конкретном случае - умножкние матрицы на число и сложение матриц.
При умножении матрицы на число каждый матричный элемент умножается на это число, а сложение матриц подразумевает попарное сложение элементов, расположенных в эквивалентных позициях.
Терминологическое выражение " линейная комбинация<" (векторов, матриц, строк, столбцов и так далее) всегда означает одно и тоже: алгебраическая сумма этих векторов (или матриц, строк, столбцов и так далее), предварительно умноженных на числовые коэффициенты.
Матрицы A = || ai j || и B = || ai j || считаются равными, если они имеют одинаковые размеры и их соответствующие матричные элементы попарно равны:
|
|
(1) |
|
для любых допустимых значений индексов i и j. К линейным операциям над элементами множества или пространства относятся операции сложения элементов и их умножения на скаляр (число). Умножение матрицы на число При умножении матрицы A на число λ (слева или справа) каждый ее матричный элемент умножается на это число:
|
|
(2) |
|
Сложение матриц Операция сложения определена только для матриц одинаковых размеров. Результатом сложения матриц A = || ai j || и B = || bi j || является матрица C = || ci j || , элементы которой равны сумме соответствующих матричных элементов:
|
|
(3) |
|
Линейной
комбинацией матриц A и B называется
выражение вида ,
где
и
– числовые коэффициенты.
↑ назад в содержание ↑