
- •Front Matter
- •Copyright, Trademarks, and Attributions
- •Attributions
- •Print Production
- •Contacting The Publisher
- •HTML Version and Source Code
- •Typographical Conventions
- •Author Introduction
- •Audience
- •Book Content
- •The Genesis of repoze.bfg
- •The Genesis of Pyramid
- •Thanks
- •Pyramid Introduction
- •What Makes Pyramid Unique
- •URL generation
- •Debug Toolbar
- •Debugging settings
- •Class-based and function-based views
- •Extensible templating
- •Rendered views can return dictionaries
- •Event system
- •Built-in internationalization
- •HTTP caching
- •Sessions
- •Speed
- •Exception views
- •No singletons
- •View predicates and many views per route
- •Transaction management
- •Flexible authentication and authorization
- •Traversal
- •Tweens
- •View response adapters
- •Testing
- •Support
- •Documentation
- •What Is The Pylons Project?
- •Pyramid and Other Web Frameworks
- •Installing Pyramid
- •Before You Install
- •Installing Pyramid on a UNIX System
- •Installing the virtualenv Package
- •Creating the Virtual Python Environment
- •Installing Pyramid Into the Virtual Python Environment
- •Installing Pyramid on a Windows System
- •What Gets Installed
- •Application Configuration
- •Summary
- •Creating Your First Pyramid Application
- •Hello World
- •Imports
- •View Callable Declarations
- •WSGI Application Creation
- •WSGI Application Serving
- •Conclusion
- •References
- •Creating a Pyramid Project
- •Scaffolds Included with Pyramid
- •Creating the Project
- •Installing your Newly Created Project for Development
- •Running The Tests For Your Application
- •Running The Project Application
- •Reloading Code
- •Viewing the Application
- •The Debug Toolbar
- •The Project Structure
- •The MyProject Project
- •development.ini
- •production.ini
- •MANIFEST.in
- •setup.py
- •setup.cfg
- •The myproject Package
- •__init__.py
- •views.py
- •static
- •templates/mytemplate.pt
- •tests.py
- •Modifying Package Structure
- •Using the Interactive Shell
- •What Is This pserve Thing
- •Using an Alternate WSGI Server
- •Startup
- •The Startup Process
- •Deployment Settings
- •Request Processing
- •URL Dispatch
- •High-Level Operational Overview
- •Route Pattern Syntax
- •Route Declaration Ordering
- •Route Matching
- •The Matchdict
- •The Matched Route
- •Routing Examples
- •Example 1
- •Example 2
- •Example 3
- •Matching the Root URL
- •Generating Route URLs
- •Static Routes
- •Debugging Route Matching
- •Using a Route Prefix to Compose Applications
- •Custom Route Predicates
- •Route Factories
- •Using Pyramid Security With URL Dispatch
- •Route View Callable Registration and Lookup Details
- •References
- •Views
- •View Callables
- •View Callable Responses
- •Using Special Exceptions In View Callables
- •HTTP Exceptions
- •How Pyramid Uses HTTP Exceptions
- •Custom Exception Views
- •Using a View Callable to Do an HTTP Redirect
- •Handling Form Submissions in View Callables (Unicode and Character Set Issues)
- •Alternate View Callable Argument/Calling Conventions
- •Renderers
- •Writing View Callables Which Use a Renderer
- •Built-In Renderers
- •string: String Renderer
- •json: JSON Renderer
- •JSONP Renderer
- •*.pt or *.txt: Chameleon Template Renderers
- •*.mak or *.mako: Mako Template Renderer
- •Varying Attributes of Rendered Responses
- •Deprecated Mechanism to Vary Attributes of Rendered Responses
- •Adding and Changing Renderers
- •Adding a New Renderer
- •Changing an Existing Renderer
- •Overriding A Renderer At Runtime
- •Templates
- •Using Templates Directly
- •System Values Used During Rendering
- •Chameleon ZPT Templates
- •A Sample ZPT Template
- •Using ZPT Macros in Pyramid
- •Templating with Chameleon Text Templates
- •Side Effects of Rendering a Chameleon Template
- •Debugging Templates
- •Chameleon Template Internationalization
- •Templating With Mako Templates
- •A Sample Mako Template
- •Automatically Reloading Templates
- •Available Add-On Template System Bindings
- •View Configuration
- •Mapping a Resource or URL Pattern to a View Callable
- •@view_defaults Class Decorator
- •NotFound Errors
- •Debugging View Configuration
- •Static Assets
- •Serving Static Assets
- •Generating Static Asset URLs
- •Advanced: Serving Static Assets Using a View Callable
- •Root-Relative Custom Static View (URL Dispatch Only)
- •Overriding Assets
- •The override_asset API
- •Request and Response Objects
- •Request
- •Special Attributes Added to the Request by Pyramid
- •URLs
- •Methods
- •Unicode
- •Multidict
- •Dealing With A JSON-Encoded Request Body
- •Cleaning Up After a Request
- •More Details
- •Response
- •Headers
- •Instantiating the Response
- •Exception Responses
- •More Details
- •Sessions
- •Using The Default Session Factory
- •Using a Session Object
- •Using Alternate Session Factories
- •Creating Your Own Session Factory
- •Flash Messages
- •Using the session.flash Method
- •Using the session.pop_flash Method
- •Using the session.peek_flash Method
- •Preventing Cross-Site Request Forgery Attacks
- •Using the session.get_csrf_token Method
- •Using the session.new_csrf_token Method
- •Using Events
- •An Example
- •Reloading Templates
- •Reloading Assets
- •Debugging Authorization
- •Debugging Not Found Errors
- •Debugging Route Matching
- •Preventing HTTP Caching
- •Debugging All
- •Reloading All
- •Default Locale Name
- •Including Packages
- •pyramid.includes vs. pyramid.config.Configurator.include()
- •Mako Template Render Settings
- •Mako Directories
- •Mako Module Directory
- •Mako Input Encoding
- •Mako Error Handler
- •Mako Default Filters
- •Mako Import
- •Mako Preprocessor
- •Examples
- •Understanding the Distinction Between reload_templates and reload_assets
- •Adding A Custom Setting
- •Logging
- •Sending Logging Messages
- •Filtering log messages
- •Logging Exceptions
- •PasteDeploy Configuration Files
- •PasteDeploy
- •Entry Points and PasteDeploy .ini Files
- •[DEFAULTS] Section of a PasteDeploy .ini File
- •Command-Line Pyramid
- •Displaying Matching Views for a Given URL
- •The Interactive Shell
- •Extending the Shell
- •IPython or bpython
- •Displaying All Application Routes
- •Invoking a Request
- •Writing a Script
- •Changing the Request
- •Cleanup
- •Setting Up Logging
- •Making Your Script into a Console Script
- •Internationalization and Localization
- •Creating a Translation String
- •Using The TranslationString Class
- •Using the TranslationStringFactory Class
- •Working With gettext Translation Files
- •Installing Babel and Lingua
- •Extracting Messages from Code and Templates
- •Initializing a Message Catalog File
- •Updating a Catalog File
- •Compiling a Message Catalog File
- •Using a Localizer
- •Performing a Translation
- •Performing a Pluralization
- •Obtaining the Locale Name for a Request
- •Performing Date Formatting and Currency Formatting
- •Chameleon Template Support for Translation Strings
- •Mako Pyramid I18N Support
- •Localization-Related Deployment Settings
- •Activating Translation
- •Adding a Translation Directory
- •Setting the Locale
- •Locale Negotiators
- •The Default Locale Negotiator
- •Using a Custom Locale Negotiator
- •Virtual Hosting
- •Virtual Root Support
- •Further Documentation and Examples
- •Test Set Up and Tear Down
- •What?
- •Using the Configurator and pyramid.testing APIs in Unit Tests
- •Creating Integration Tests
- •Creating Functional Tests
- •Resources
- •Location-Aware Resources
- •Generating The URL Of A Resource
- •Overriding Resource URL Generation
- •Generating the Path To a Resource
- •Finding a Resource by Path
- •Obtaining the Lineage of a Resource
- •Determining if a Resource is In The Lineage of Another Resource
- •Finding the Root Resource
- •Resources Which Implement Interfaces
- •Finding a Resource With a Class or Interface in Lineage
- •Pyramid API Functions That Act Against Resources
- •Much Ado About Traversal
- •URL Dispatch
- •Historical Refresher
- •Traversal (aka Resource Location)
- •View Lookup
- •Use Cases
- •Traversal
- •Traversal Details
- •The Resource Tree
- •The Traversal Algorithm
- •A Description of The Traversal Algorithm
- •Traversal Algorithm Examples
- •References
- •Security
- •Enabling an Authorization Policy
- •Enabling an Authorization Policy Imperatively
- •Protecting Views with Permissions
- •Setting a Default Permission
- •Assigning ACLs to your Resource Objects
- •Elements of an ACL
- •Special Principal Names
- •Special Permissions
- •Special ACEs
- •ACL Inheritance and Location-Awareness
- •Changing the Forbidden View
- •Debugging View Authorization Failures
- •Debugging Imperative Authorization Failures
- •Creating Your Own Authentication Policy
- •Creating Your Own Authorization Policy
- •Combining Traversal and URL Dispatch
- •A Review of Non-Hybrid Applications
- •URL Dispatch Only
- •Traversal Only
- •Hybrid Applications
- •The Root Object for a Route Match
- •Using *traverse In a Route Pattern
- •Using *subpath in a Route Pattern
- •Corner Cases
- •Registering a Default View for a Route That Has a view Attribute
- •Using Hooks
- •Changing the Not Found View
- •Changing the Forbidden View
- •Changing the Request Factory
- •Using The Before Render Event
- •Adding Renderer Globals (Deprecated)
- •Using Response Callbacks
- •Using Finished Callbacks
- •Changing the Traverser
- •Changing How pyramid.request.Request.resource_url() Generates a URL
- •Changing How Pyramid Treats View Responses
- •Using a View Mapper
- •Creating a Tween Factory
- •Registering an Implicit Tween Factory
- •Suggesting Implicit Tween Ordering
- •Explicit Tween Ordering
- •Displaying Tween Ordering
- •Pyramid Configuration Introspection
- •Using the Introspector
- •Introspectable Objects
- •Pyramid Introspection Categories
- •Introspection in the Toolbar
- •Disabling Introspection
- •Rules for Building An Extensible Application
- •Fundamental Plugpoints
- •Extending an Existing Application
- •Extending the Application
- •Overriding Views
- •Overriding Routes
- •Overriding Assets
- •Advanced Configuration
- •Two-Phase Configuration
- •Using config.action in a Directive
- •Adding Configuration Introspection
- •Introspectable Relationships
- •Thread Locals
- •Why and How Pyramid Uses Thread Local Variables
- •Using the Zope Component Architecture in Pyramid
- •Using the ZCA Global API in a Pyramid Application
- •Disusing the Global ZCA API
- •Enabling the ZCA Global API by Using hook_zca
- •Enabling the ZCA Global API by Using The ZCA Global Registry
- •Background
- •Design
- •Overall
- •Models
- •Views
- •Security
- •Summary
- •Installation
- •Preparation
- •Make a Project
- •Run the Tests
- •Expose Test Coverage Information
- •Start the Application
- •Visit the Application in a Browser
- •Decisions the zodb Scaffold Has Made For You
- •Basic Layout
- •Resources and Models with models.py
- •Views With views.py
- •Defining the Domain Model
- •Delete the Database
- •Edit models.py
- •Look at the Result of Our Edits to models.py
- •View the Application in a Browser
- •Defining Views
- •Declaring Dependencies in Our setup.py File
- •Adding View Functions
- •Viewing the Result of all Our Edits to views.py
- •Adding Templates
- •Viewing the Application in a Browser
- •Adding Authorization
- •Add Authentication and Authorization Policies
- •Add security.py
- •Give Our Root Resource an ACL
- •Add Login and Logout Views
- •Change Existing Views
- •Add permission Declarations to our view_config Decorators
- •Add the login.pt Template
- •Change view.pt and edit.pt
- •See Our Changes To views.py and our Templates
- •View the Application in a Browser
- •Adding Tests
- •Test the Models
- •Test the Views
- •Functional tests
- •View the results of all our edits to tests.py
- •Run the Tests
- •Distributing Your Application
- •SQLAlchemy + URL Dispatch Wiki Tutorial
- •Background
- •Design
- •Overall
- •Models
- •Views
- •Security
- •Summary
- •Installation
- •Preparation
- •Making a Project
- •Running the Tests
- •Exposing Test Coverage Information
- •Initializing the Database
- •Starting the Application
- •Decisions the alchemy Scaffold Has Made For You
- •Basic Layout
- •View Declarations via views.py
- •Content Models with models.py
- •Making Edits to models.py
- •Changing scripts/initializedb.py
- •Reinitializing the Database
- •Viewing the Application in a Browser
- •Defining Views
- •Declaring Dependencies in Our setup.py File
- •Running setup.py develop
- •Changing the views.py File
- •Adding Templates
- •Adding Routes to __init__.py
- •Viewing the Application in a Browser
- •Adding Authorization
- •Adding A Root Factory
- •Add an Authorization Policy and an Authentication Policy
- •Adding an authentication policy callback
- •Adding Login and Logout Views
- •Changing Existing Views
- •Adding the login.pt Template
- •Seeing Our Changes To views.py and our Templates
- •Viewing the Application in a Browser
- •Adding Tests
- •Testing the Models
- •Testing the Views
- •Functional tests
- •Viewing the results of all our edits to tests.py
- •Running the Tests
- •Distributing Your Application
- •Converting a repoze.bfg Application to Pyramid
- •Running a Pyramid Application under mod_wsgi
- •pyramid.authorization
- •pyramid.authentication
- •Authentication Policies
- •Helper Classes
- •pyramid.chameleon_text
- •pyramid.chameleon_zpt
- •pyramid.config
- •pyramid.events
- •Functions
- •Event Types
- •pyramid.exceptions
- •pyramid.httpexceptions
- •HTTP Exceptions
- •pyramid.i18n
- •pyramid.interfaces
- •Event-Related Interfaces
- •Other Interfaces
- •pyramid.location
- •pyramid.paster
- •pyramid.registry
- •pyramid.renderers
- •pyramid.request
- •pyramid.response
- •Functions
- •pyramid.scripting
- •pyramid.security
- •Authentication API Functions
- •Authorization API Functions
- •Constants
- •Return Values
- •pyramid.settings
- •pyramid.testing
- •pyramid.threadlocal
- •pyramid.traversal
- •pyramid.url
- •pyramid.view
- •pyramid.wsgi
- •Glossary

29. USING HOOKS
29.13 Registering “Tweens”
latex-note.png
Tweens are a feature which were added in Pyramid 1.2. They are not available in any previous version.
A tween (a contraction of the word “between”) is a bit of code that sits between the Pyramid router’s main request handling function and the upstream WSGI component that uses Pyramid as its “app”. This is a feature that may be used by Pyramid framework extensions, to provide, for example, Pyramid-specific view timing support bookkeeping code that examines exceptions before they are returned to the upstream WSGI application. Tweens behave a bit like WSGI middleware but they have the benefit of running in a context in which they have access to the Pyramid application registry as well as the Pyramid rendering machinery.
29.13.1 Creating a Tween Factory
To make use of tweens, you must construct a “tween factory”. A tween factory must be a globally importable callable which accepts two arguments: handler and registry. handler will be the either the main Pyramid request handling function or another tween. registry will be the Pyramid application registry represented by this Configurator. A tween factory must return a tween when it is called.
A tween is a callable which accepts a request object and returns a response object.
Here’s an example of a tween factory:
1
2
3
4
5
6
7
8
9
# in a module named myapp.tweens
import time
from pyramid.settings import asbool import logging
log = logging.getLogger(__name__)
def timing_tween_factory(handler, registry):
334

29.13. REGISTERING “TWEENS”
10if asbool(registry.settings.get(’do_timing’)):
11# if timing support is enabled, return a wrapper
12def timing_tween(request):
13 |
start = time.time() |
14 |
try: |
15 |
response = handler(request) |
16 |
finally: |
17 |
end = time.time() |
18 |
log.debug(’The request took %s seconds’ % |
19 |
(end - start)) |
20 |
return response |
21return timing_tween
22# if timing support is not enabled, return the original
23# handler
24return handler
If you remember, a tween is an object which accepts a request object and which returns a response argument. The request argument to a tween will be the request created by Pyramid’s router when it receives a WSGI request. The response object will be generated by the downstream Pyramid application and it should be returned by the tween.
In the above example, the tween factory defines a timing_tween tween and returns it if asbool(registry.settings.get(’do_timing’)) is true. It otherwise simply returns the handler it was given. The registry.settings attribute is a handle to the deployment settings provided by the user (usually in an .ini file). In this case, if the user has defined a do_timing setting, and that setting is True, the user has said she wants to do timing, so the tween factory returns the timing tween; it otherwise just returns the handler it has been provided, preventing any timing.
The example timing tween simply records the start time, calls the downstream handler, logs the number of seconds consumed by the downstream handler, and returns the response.
29.13.2 Registering an Implicit Tween Factory
Once you’ve created a tween factory, you can register it into the implicit tween chain using the pyramid.config.Configurator.add_tween() method using its dotted Python name.
Here’s an example of registering the a tween factory as an “implicit” tween in a Pyramid application:
1
2
3
from pyramid.config import Configurator config = Configurator()
config.add_tween(’myapp.tweens.timing_tween_factory’)
335

29. USING HOOKS
Note that you must use a dotted Python name as the first argument to pyramid.config.Configurator.add_tween(); this must point at a tween factory. You cannot pass the tween factory object itself to the method: it must be dotted Python name that points to a globally importable object. In the above example, we assume that a timing_tween_factory tween factory was defined in a module named myapp.tweens, so the tween factory is importable as myapp.tweens.timing_tween_factory.
When you use pyramid.config.Configurator.add_tween(), you’re instructing the system to use your tween factory at startup time unless the user has provided an explicit tween list in his configuration. This is what’s meant by an “implicit” tween. A user can always elect to supply an explicit tween list, reordering or disincluding implicitly added tweens. See Explicit Tween Ordering for more information about explicit tween ordering.
If more than one call to pyramid.config.Configurator.add_tween() is made within a single application configuration, the tweens will be chained together at application startup time. The first tween factory added via add_tween will be called with the Pyramid exception view tween factory as its handler argument, then the tween factory added directly after that one will be called with the result of the first tween factory as its handler argument, and so on, ad infinitum until all tween factories have been called. The Pyramid router will use the outermost tween produced by this chain (the tween generated by the very last tween factory added) as its request handler function. For example:
1
2
3
4
5
from pyramid.config import Configurator
config = Configurator() config.add_tween(’myapp.tween_factory1’) config.add_tween(’myapp.tween_factory2’)
The above example will generate an implicit tween chain that looks like this:
INGRESS (implicit) myapp.tween_factory2 myapp.tween_factory1
pyramid.tweens.excview_tween_factory (implicit) MAIN (implicit)
29.13.3 Suggesting Implicit Tween Ordering
By default, as described above, the ordering of the chain is controlled entirely by the relative ordering of calls to pyramid.config.Configurator.add_tween(). However, the caller of add_tween can provide an optional hint that can influence the implicit tween chain ordering by supplying under or over (or both) arguments to add_tween(). These hints are only used used when an explicit tween
336

29.13. REGISTERING “TWEENS”
ordering is not used. See Explicit Tween Ordering for a description of how to set an explicit tween ordering.
Allowable values for under or over (or both) are:
•None (the default).
•A dotted Python name to a tween factory: a string representing the predicted dotted name of a tween factory added in a call to add_tween in the same configuration session.
•One of the constants pyramid.tweens.MAIN, pyramid.tweens.INGRESS, or pyramid.tweens.EXCVIEW.
•An iterable of any combination of the above. This allows the user to specify fallbacks if the desired tween is not included, as well as compatibility with multiple other tweens.
Effectively, under means “closer to the main Pyramid application than”, over means “closer to the request ingress than”.
For example, the following call to add_tween() will attempt to place the tween factory represented by myapp.tween_factory directly ‘above’ (in ptweens order) the main Pyramid request handler.
1
2
3
import pyramid.tweens
config.add_tween(’myapp.tween_factory’, over=pyramid.tweens.MAIN)
The above example will generate an implicit tween chain that looks like this:
INGRESS (implicit) pyramid.tweens.excview_tween_factory (implicit) myapp.tween_factory
MAIN (implicit)
Likewise, calling the following call to add_tween() will attempt to place this tween factory ‘above’ the main handler but ‘below’ a separately added tween factory:
1
2
3
4
5
6
7
import pyramid.tweens
config.add_tween(’myapp.tween_factory1’, over=pyramid.tweens.MAIN)
config.add_tween(’myapp.tween_factory2’, over=pyramid.tweens.MAIN, under=’myapp.tween_factory1’)
The above example will generate an implicit tween chain that looks like this:
337