Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:

AlgStr / Библиотека / Понятия / Лямбда-исчисление

.doc
Скачиваний:
76
Добавлен:
23.03.2015
Размер:
72.7 Кб
Скачать

Лямбда-исчисление

Ля́мбда-исчисле́ние (λ-исчисление, лямбда-исчисление) — формальная система, разработанная американским математиком Алонзо Чёрчем, для формализации и анализа понятия вычислимости.

λ-исчисление может рассматриваться как семейство прототипных языков программирования. Их основная особенность состоит в том, что они являются языками высших порядков. Тем самым обеспечивается систематический подход к исследованию операторов, аргументами которых могут быть другие операторы, а значением также может быть оператор. Языки в этом семействе являются функциональными, поскольку они основаны на представлении о функции или операторе, включая функциональную аппликацию и функциональную абстракцию.

λ-исчисление реализовано Джоном Маккарти в языке Лисп. В начале реализация идеи λ-исчисления была весьма громоздкой. Но по мере развития Лисп-технологии (прошедшей этап аппаратной реализации в виде Лисп-машины) идеи получили ясную и четкую реализацию.

Чистое λ-исчисление

Это простейший из семейства прототипных языков программирования, чистое λ-исчисление, термы которого, называемые также объектами (обами), или λ-термами, построены исключительно из переменных применением аппликации и абстракции. Изначально наличия каких-либо констант не предполагается.

Аппликация и абстракция

В основу λ-исчисления положены две фундаментальные операции: аппликация и абстракция. Аппликация означает применение или вызов функции по отношению к заданному значению. Её обычно обозначают , где f — функция, а a — значение. Это соответствует общепринятой в математике записи f(a), которая тоже иногда используется, однако для λ-исчисления важно то, что f трактуется как алгоритм, вычисляющий результат по заданному входному значению. В этом смысле аппликация f к a может рассматриваться двояко: как результат применения f к a, или же как процесс вычисления . Последняя интерпретация аппликации связана с понятием β-редукции.

Абстракция или λ-абстракция в свою очередь строит функции по заданным выражениям. Именно, если  — выражение, свободно содержащее x, тогда запись означает: λ функция от аргумента x, которая имеет вид t[x]) обозначает функцию . Таким образом, с помощью абстракции можно конструировать новые функции. Требование, чтобы x свободно входило в t, не очень существенно — достаточно предположить, что , если это не так.

β-редукция

Поскольку выражение обозначает функцию, ставящую в соответствие каждому x значение , то для вычисления выражения

,

в которое входят и аппликация и абстракция, необходимо выполнить подстановку числа 3 в терм вместо переменной x. В результате получается . Это соображение в общем виде записывается как

и носит название β-редукция. Выражение вида , то есть применение абстракции к некому терму, называется редексом (redex). Несмотря на то, что β-редукция по сути является единственной «существенной» аксиомой λ-исчисления, она приводит к весьма содержательной и сложной теории. Вместе с ней λ-исчисление обладает свойством полноты по Тьюрингу и, следовательно, представляет собой простейший язык программирования.

η-преобразование

η-преобразование выражает ту идею, что две функции являются идентичными тогда и только тогда, когда, будучи применённые к любому аргументу, дают одинаковые результаты. η-преобразование переводит друг в друга формулы и f (в обратную сторону — только если x не имеет свободных вхождений в f: иначе свободная переменная x после преобразования станет связанной внешней абстракцией).

Каррирование (карринг)

Функция двух переменных x и y f(x,y) = x + y может быть рассмотрена как функция одной переменной x, возвращающая функцию одной переменной y, то есть как выражение . Такой приём работает точно так же для функций любой арности. Это показывает, что функции многих переменных могут быть без проблем выражены в λ-исчислении и являются «синтаксическим сахаром». Описанный процесс превращения функций многих переменных в функцию одной переменной называется карринг (также: каррирование), в честь американского математика Хаскелла Карри, хотя первым его предложил М. И. Шейнфинкель (1924)

Семантика бестипового λ-исчисления

Тот факт, что термы λ-исчисления действуют как функции, применяемые к термам λ-исчисления (то есть, возможно, к самим себе), приводит к сложностям построения адекватной семантики λ-исчисления. Можно ли приписать λ-исчислению какой-либо смысл? Желательно иметь множество D, в которое вкладывалось бы его пространство функций D → D. В общем случае такого D не существует по соображениям ограничений на мощности этих двух множеств, D и функций из D в D: второе имеет большую мощность, чем первое.

Эту трудность преодолел Д. С. Скотт, построив понятие области D (полной решётки[1] или, более обще, полного частично упорядоченного множества со специальной топологией) и урезав D → D до непрерывных (в имеющейся топологии) функций[2]. После этого также стало понятно, как можно строить денотационную семантику языков программирования. Это произошло благодаря тому, что с помощью конструкций Скотта можно придать значение также двум важным конструкциям языков программирования — рекурсии и типам данных.