Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Скачиваний:
86
Добавлен:
18.03.2015
Размер:
69.63 Кб
Скачать

Методика обучения решению показательных и логарифмических уравнений и неравенств.

по Мордковичу: решение показательных уравнений.

Дается определение показательного уравнения. Опр: показательными уравнениями называется уравнение вида =, где а- положительное число, отличное от 1, и уравнения, сводящиеся к этому виду. Далее формулируется следующая теорема. Теорема: показательное уравнение =(где а>0, а ≠0) равносильно уравнению f(x) =g(x).

Решение показательных уравнений основывается на этой теореме.

Можно выделить три основных метода решения показательных уравнений.

1). Функционально – графический метод.Он основан на использовании графических иллюстраций или каких- либо свойств функций.

2) Метод уравнения показателей. Он основан на теореме.

3) Метод введения новой переменной.

Решение показательных неравенств.

Дается определение показательного неравенства.Опр: Показательными неравенствами называют неравенства вида >, где а- положительное число, отличное от 1, и неравенства, сводящиеся к этому виду.Далее формулируется теорема: показательное неравенство > равносильно неравенству того же смысла f(x) > g(x), если а>1

показательное неравенство > равносильно неравенству противоположного смысла f(x) < g(x), если 0<а>1.

Решение показательных неравенств основывается на этой теореме.

Решение логарифмических уравнений.

Дается определение логарифмических уравнений.Опр: логарифмическими уравнениями называют уравнения вида = , где а- положительное число, отличное от 1, и уравнения, сводящиеся к этому виду. Далее формулируется теорема: Если f(x)>0 и g(x)>0,то логарифмическое уравнение = (где а>0, а ≠1) равносильно уравнению f(x)=g(x).

Решение логарифмических уравнений основывается на этой теореме.

На практике эту теорему применяют так: переходят от уравнения = к уравнению f(x)=g(x), решают уравнение f(x)=g(x), а затем проверяют его корни по условиям f(x)>0,g(x)>0,определяющим область допустимых значений переменной. Те корни уравнения f(x)=g(x),которые удовлетворяют этим условиям, являются корнями уравнения = .Те корни уравнения f(x)=g(x), которые не удовлетворяют хотя бы одному из этих условий, объявляют посторонними корнями для уравнения = .Можно выделить три основных метода решения логарифмических уравнений: 1). Функционально – графический метод. Он основан на использовании графических иллюстраций или каких- либо свойств функций.

2) Метод потенцирования. Он основан на теореме.

3) Метод введения новой переменной.

Решение логарифмических неравенств.

Дается определение логарифмических неравенств. Опр: логарифмическими неравенствами называют неравенства вида

> , где а- положительное число, отличное от 1, и неравенства, сводящиеся к этому виду.

Для решения неравенства преобразуют его к виду - >0 и далее >0, т.е. >0, где t =.

Далее формулируется теорема: Если f(x)>0 и g(x)>0,то

Тут вы можете оставить комментарий к выбранному абзацу или сообщить об ошибке.

Оставленные комментарии видны всем.

Соседние файлы в папке Новая папка