- •Основные положения молекулярно-кинетической теории (мкт)
- •2012 Оглавление
- •1. Статистические и термодинамические методы исследования
- •2.Термодинамическая система
- •3. Опытные законы идеального газа
- •4. Уравнение состояния идеального газа
- •5. Основное уравнение молекулярно-кинетической теории идеальных газов
- •6. Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения
- •7. Барометрическая формула. Распределение Больцмана
- •8. Среднее число столкновений и средняя длина свободного пробега
- •10. Явления переноса
- •Список использованной литературы:
Государственное образовательное учреждение высшего профессионального образования «Алтайская Государственная Педагогическая Академия»
Кафедра общей физики
Лялина Екатерина Валерьевна
Студентка 2 курса ИФМО
Основные положения молекулярно-кинетической теории (мкт)
Реферат
Преподаватель:
Харламов И.С.
2012 Оглавление
2.Термодинамическая система 3
3. Опытные законы идеального газа 4
4. Уравнение состояния идеального газа 5
5. Основное уравнение молекулярно-кинетической теории идеальных газов 6
6. Закон Максвелла для распределения молекул идеального газа по скоростям и энергиям теплового движения 7
7. Барометрическая формула. Распределение Больцмана 8
8. Среднее число столкновений и средняя длина свободного пробега 9
9. Опытное обоснование молекулярно-кинетической теории 10
10. Явления переноса 11
Список использованной литературы: 12
1. Статистические и термодинамические методы исследования
Основные положения молекулярно-кинетической теории.
Молекулярно-кинетическая теория (МКТ) занимается изучением свойств веществ, основываясь при этом на представлениях о частицах вещества.
МКТ базируется на трех основных положениях:
1. Все вещества состоят из частиц - молекул, атомов и ионов.
2. Частицы вещества беспрерывно и беспорядочно движутся.
3. Частицы вещества взаимодействуют друг с другом.
Беспорядочное (хаотичное) движение атомов и молекул в веществе называют тепловым движением, потому что скорость движения частиц увеличивается с ростом температуры. Экспериментальным подтверждением непрерывного движения атомов и молекул в веществе является броуновское движение и диффузия.
Молекулярная физика и термодинамика — разделы физики, в которых изучаются свойства тел и происходящие в них макроскопические процессы, связанные с огромным числом частиц, содержащихся в телах.
Для исследования этих процессов пользуются двумя методами: молекулярно-кинетическим (статистическим) и термодинамическим.
В основе молекулярной физики лежит молекулярно-кинетическая теория (MKT), которая объясняет строение и свойства тел движением и взаимодействием частиц (молекул, атомов, ионов), из которых состоят тела. Свойства тел, которые непосредственно наблюдаются на опыте (давление, температура и др.), она истолковывает как суммарный результат действия частиц. При этом она пользуется статистическим методом, интересуясь не индивидуальными характеристиками отдельных частиц, а лишь средними значениями физических величин, которые характеризуют движение частиц, составляющих систему.
Термодинамика изучает общие свойства тел и различные процессы в них, сопровождающиеся превращениями энергии, на основе двух начал — фундаментальных законов, установленных в результате обобщения огромного числа опытных фактов, не используя какую-либо определенную модель строения вещества и не высказывая предположения о законах взаимодействия атомов и молекул.
В термодинамике изучаются тепловые процессы — процессы, связанные с изменением температуры тела, а также с изменением его агрегатного состояния.
Термодинамический и молекулярно кинетический методы, применяемые к одним и тем же объектам, дополняют друг друга.
2.Термодинамическая система
Термодинамическая система — это некая физическая система, состоящая из большого количества частиц, способная обмениваться с окружающей средой энергией и веществом. Также обычно полагается, что такая система подчиняется статистическим закономерностям. Для термодинамических систем справедливы законы термодинамики. Для описания термодинамической системы вводят так называемые термодинамические величины — набор физических величин, значения которых определяют термодинамическое состояние системы. Примерами термодинамических величин являются:
температура
давление
объем
внутренняя энергия
энтропия
энтальпия
свободная энергия Гельмгольца
энергия Гиббса
Если термодинамическое состояние системы не меняется со временем, то говорят, что система находится в состоянии равновесия. Строго говоря, термодинамические величины, приведённые выше, могут быть определены только в состоянии термодинамического равновесия.
Термодинамические системы подразделяются на однородные по составу (например, газ в сосуде) и неоднородные (вода и пар или смесь газов в сосуде).
Выделяют также изолированные системы, то есть системы, которые не обмениваются с окружающей средой ни энергией, ни веществом, и закрытые системы, которые обмениваются со средой только энергией, но не обмениваются веществом. Если же в системе происходят обменные процессы с окружающей средой, то её называют открытой.