
- •24. Соединения клеевые. Область применения
- •29. Расчет на прочность призматических шпонок
- •30. Шлицевые соединения. Конструкции и классификация
- •36. Виды зубчатых передач
- •37. Геометрические характеристики зубчатых передач
- •20. Область применения сварных конструкций
- •21. Конструкции сварных соединений
- •22. Расчет на прочность сварных соединений
- •25. Расчет на прочность паянных соединений
- •26. От чего зависит прочность клеевого соединения
- •27. Клеммовые соединения. Конструкции и применение
- •32. Критерии работоспособности шлицевых соединений. Почему они изнашиваются и как это учитывается при расчете
- •33. Что такое механическая передача и необходимость ее применения
- •35. Основные характеристики механических передач:
- •38. Что такое коэффициент перекрытия зубчатой передачи
- •39. Что такое контактные напряжения и как они определяются
- •23. Соединение пайкой. Область применения
- •28. Виды шпонок
- •31. В чем преимущества шлицевого соединения по сравнению со шпоночным
- •34. Классификация механических передач
- •40. Расчет на прочность зубчатых передач
- •42. Основной расчет ременной передачи
- •44. Подшипники, их виды
- •45. Подшипинки скольжения
- •49. Проектный расчет вала
- •50. В чем сущность расчета валов на усталость
- •51. Как можно повысить сопротивление усталости валов
- •53. В чем состоит задача расчета на прочность? на жесткость? на устойчивость?
- •58. Как формулируется закон гука при растяжении? напишите формулы абсолютной и относительной продольных деформаций бруса?
- •59. Какой случай плоского напряженного состяния называется чистым сдвигом? закон гука при сдвиге?
- •60. Что такое полярный момент инерции и полярный момент сопротивления? связь между ними
- •65. Как производится расчет скручиваемого бруса на прочность и жесткость?
- •66. Какие типы опор применяются для закрепления балок и как направлены их реакции?
- •67. Как производится расчет на почность при прямом изгибе
- •71. Что такое система вала и система отверстия
- •43. Фрикционные передачи
- •46. Подшипники качения
- •47. Расчет подшипников качения
- •54. Какие внутренние усилия могут возникнуть в поперечных сечениях брусьев и какие виды деформаций с ними связаны?
- •55. В чем сущность метода сечений
- •61. Что такое осевой момент инерции и осевой момент сопротивления. Связь между ними
- •62. Какой из двух осевых моментов инерции треугольника больше: относительно оси, проходящей….
- •63. Что представляют собой эпюры крутящих моментов и как они строятся
- •68. В каких случаях следует производить дополнительную проверку балок на прочность по наибольшим касательным напряжениям. Как производится эта проверка???
- •69. Какая дифференциальная зависимость существует между интенсивностью нагрузки, поперечной силой и изгибающим моментом
- •72. Виды отклонения формы и расположение поверхностей
- •74, Что такое допуск на изготовление деталей
- •48. Что такое вал (ось). Их виды
- •56. В чем состоит принцип независимости действия сил?
- •57. Что называется модулем упругости е? как влияет величина е на деформации бруса?
- •64. Какие напряжения возникают в поперечном сечении бруса круглого сечения при кручении и как они направлены?
- •70. Как строятся эпюры поперечных сил и изгибающих моментов
- •73. Взаимозаменяемость и ее виды
- •75. Виды посадок
66. Какие типы опор применяются для закрепления балок и как направлены их реакции?
Опоры балок, рассматриваемых как плоские системы, бывают трех основных типов.
1. Подвижная шарнирная опора (рис. 3.2, а). Такая опора не препятствует вращению конца балки и его перемещению вдоль плоскости качения. В ней может возникать только одна реакция, которая перпендикулярна плоскости качения и проходит через центр катка.
Схематичное изображение подвижной шарнирной опоры дано на рис. 3.2, б.
Подвижные опоры дают возможность балке беспрепятственно изменять свою длину при изменении температуры и тем самым устраняют возможность появления температурных напряжений.
2. Неподвижная шарнирная опора (рис. 3.2, в). Такая опора допускает вращение конца балки, но устраняет поступательное перемещение ее в любом направлении. Возникающую в ней реакцию можно разложить на две составляющие - горизонтальную и вертикальную.
3. Жесткая заделка, или защемление (рис. 3.2, г). Такое закрепление не допускает ни линейных, ни угловых перемещений опорного сечения. В этой опоре может в общем случае возникать реакция, которую обычно раскладывают на две составляющие (вертикальную и горизонтальную) и момент защемления (реактивный момент).
67. Как производится расчет на почность при прямом изгибе
Условие
прочности по нормальным напряжениям
,где –
наибольшее по модулю напряжение в
поперечном сечении;
–
изгибающий момент;
–
осевой момент сопротивления;
–
допускаемые нормальные напряжения.
Условие прочности по касательным напряжениям
,
где –
наибольшее по модулю напряжение в
поперечном сечении;
–
допускаемые касательные напряжения.
Если для материала балки заданы различные допускаемые нормальные напряжения при растяжении и сжатии, то условия прочности применяют отдельно к наиболее растянутым и к наиболее сжатым волокнам балки.
71. Что такое система вала и система отверстия
Стандартами допусков и посадок в нашей промышленности установлены две возможные к применению совокупности посадок — система отверстия и система вала.
Системой отверстия называется совокупность посадок, в которых предельные отклонения отверстий одинаковы (при одном и том же классе точности и одном и том же номинальном размере), а различные посадки достигаются путем изменения предельных отклонений валов (рис. 73, а). Во всех посадках системы отверстия нижнее предельное отклонение отверстия всегда равно нулю.
Такое отверстие называется основным отверстием. Из рисунка видно, что при одном и том же номинальном размере (диаметре) и постоянном допуске основного отверстия могут быть получены разные посадки за счет изменения предельных размеров вала. В самом деле, вал 1 даже наибольшего предельного диаметра свободно войдет в наименьшее отверстие. Соединив вал 2 при наибольшем предельном его размере с наименьшим отверстием, мы получим зазор, равный нулю, но при других соотношениях диаметров отверстия и вала в этом сопряжении получается подвижная посадка. Посадки Балов 3 и 4 относятся к группе переходных, так как при одних значениях действительных размеров отверстий и валов 3 и 4 будет иметь место зазор, а при других натяг. Вал 5 при всех условиях войдет в отверстие с натягом, что всегда обеспечит неподвижную посадку.
Основное отверстие в системе отверстия обозначается сокращенно буквой А в отличие от обозначения второй (не основной) детали, входящей в сопряжение, которая обозначается буквами соответствующей посадки.
Системой вала называется совокупность посадок, в которых преельные отклонения валов одинаковы (при одном и том же классе очности и одном и том же номинальном размере), а различные посадки достигаются путем изменения предельных отклонений отверстий. Во всех посадках системы вала верхнее предельное отклонение вала всегда равно нулю. Такой вал называется основным валом.
Схематическое изображение системы вала дано на рис. 73, б,из которого видно, что при одном и том же номинальном размере (диаметре) и постоянном допуске основного вала могут быть получены различные посадки за счет изменения предельных размеров отверстия. Действительно, соединяя с данным валом отверстие 1, мы при всех условиях будем получать подвижную посадку. Подобную же посадку, но с возможным получением зазора, равного нулю, мы получим при сопряжении с данным валом отверстия 2. Соединения вала с отверстиями 3 и 4 относятся к группе переходных посадок, а с отверстием 5 — к неподвижной посадке.
Основной вал в системе вала обозначается сокращенно буквой В.