Funktsional'naia_biokhimiia
.pdf71
животных, которые питаются главным образом углеводами и жирами. У животных, потребляющих бедную белками пищу, синтез ферментов цикла мочевины находится на низком уровне. Изменение в уровне экспрессии соответствующих ферментов обеспечивает медленную регуляцию работы цикла мочевины.
Быстрая аллостерическая регуляция по крайней мере одного ключевого фермента модулирует потоки через цикл мочевины за короткий промежуток времени. Первый фермент этого пути карбамоилфосфатсинтетаза I аллостерически активируется N- ацетилглутаматом, который образуется из ацетил-СоА и глутамата под действием N-ацетилглутаматсинтетазы. У млекопитающих N- ацетилглутаматсинтетазная активность имеет чисто регуляторную функцию (у млекопитающих нет других необходимых ферментов для превращения глутамата в аргинин). Уровень N-ацетилглутамата определяется концентрациями глутамата и ацетил-СоА (субстраты для N- ацетилглутаматсинтетазы) и аргинина (активатор N-ацетилглутаматсинтазы и, таким образом, цикла мочевины).
8. Биохимия желчеобразования и экскреция. Пигментный обмен в печени и его значение.
Впечени из холестерина образуются желчные кислоты. Эти стероидные соединения с 24 атомами углерода являются производные холановой кислоты, имеющими от одной до трех α-гидроксильных групп и боковую цепь из 5 атомов углерода с карбоксильной группой на конце цепи.
Ворганизме человека наиболее важна холевая кислота. В желчи при слабощелочном рН она присутствует в виде холат-аниона.
Кроме холевой кислоты в желчи содержится также хенодезоксихолевая кислота. Она отличается от холевой отсутствием гидроксильной группы при С-12. Оба соединения принято называть первичными желчными кислотами. В количественном отношении это наиболее важные конечные продукты обмена холестерина.
Другие две кислоты, дезоксихолевая и литохолевая, называются
вторичными желчными кислотами, поскольку они образуются путем дегидроксилирования по С-7 первичных кислот в желудочно-кишечном тракте. В печени образуются конъюгаты желчных кислот с аминокислотами (глицином или таурином), связанные пептидной связью. Эти конъюгаты
являются более сильными кислотами и присутствуют в желчи в форме солей (холатов и дезоксихолатов Na+ и К+, называемых солями желчных кислот).
Всвязи с наличием в структуре α-гидроксильных групп желчные кислоты и соли желчных кислот являются амфифильными соединениями и обладают свойствами детергентов. Основные функции желчных кислот состоят в образовании мицелл, эмульгировании жиров и солюбилизации липидов в кишечнике. Это повышает эффективность действия панкреатической липазы и способствует всасыванию липидов. Молекулы
ФУНКЦИОНАЛЬНАЯ БИОХИМИЯ
72
желчных кислот фиксируются на мицелле своими неполярными частями, обеспечивая ее растворимость. Липаза агрегирует с желчными кислотами и гидролизует жиры (триацилглицерины), содержащиеся в жировой капле.
Первичные желчные кислоты образуются исключительно в цитоплазме клеток печени. Процесс биосинтеза (1) начинается с гидроксилирования холестерина по С-7 и С-12, и эпимеризации по C-3, затем следует восстановление двойной связи в кольце В (см. рис. 3.12) и укорачивание боковой цепи на три углеродных атома.
Рисунок 3.12. – Биохимия желчеобразования
Лимитирующей стадией является гидроксилирование по С-7 с участием 7α-гидроксилазы. Холевая кислота служит ингибитором реакции, поэтому желчные кислоты регулируют скорость деградации холестерина.
Коньюгирование желчных кислот проходит в две стадии. Вначале образуются КоА-эфиры желчных кислот, а затем следует собственно стадия конъюгации с глицином или таурином (2) с образованием, например, гликохолевой и таурохолевой кислот. Желчь дренируется во внутрипеченочные желчные протоки и накапливается в желчном пузыре (3).
Кишечная микрофлора продуцирует ферменты, осуществляющие химическую модификацию желчных кислот (4). Во-первых, пептидная связь гидролизуется (деконьюгирование), и, во-вторых, за счет дегидроксилирования С-7 образуются вторичные желчные кислоты (5). Однако большая часть желчных кислот всасывается кишечным эпителием (6) и после попадания в печень вновь секретируется в составе желчи (энтерогепатическая циркуляция желчных кислот). Поэтому из 15-30 г солей желчных кислот, ежедневно поступающих в организм с желчью, в
ФУНКЦИОНАЛЬНАЯ БИОХИМИЯ
73
экскрементах обнаруживается только около 0,5 г. Это примерно соответствует ежесуточному биосинтезу холестерина de novo.
При неблагоприятном составе желчи отдельные компоненты могут кристаллизоваться. Это влечет за собой отложение желчных камней, которые чаще всего состоят из холестерина и кальциевых солей желчных кислот (холестериновые камни), но иногда эти камни включают и желчные пигменты.
Участие печени в пигментном обмене заключается в захвате из крови неконьюгированного (несвязанного, непрямого) билирубина, образовавшегося в ретикулоэндотелиальной системе из гемоглобина при разрушении эритроцитов, конъюгации его с глюкуроновой кислотой и экскреции в желчь в форме коньюгированного (связанного с глюкуроновой кислотой, прямого) билирубина.
Билирубин представляет собой конечный продукт распада гема. Основная часть (80-85%) билирубина образуется из гемоглобина и лишь небольшая часть – из других гемсодержащих белков, например цитохрома Р450. Образование билирубина происходит в клетках ретикулоэндотелиальной системы. Ежедневно образуется около 300 мг билирубина.
Преобразование гема в билирубин происходит с участием микросомального фермента гемоксигеназы, для работы которого требуются кислород и НАДФН. Образование билирубина из гема был рассмотрен в разделе «Функциональная биохимия крови».
Около 20% циркулирующего билирубина образуется не из гема зрелых эритроцитов, а из других источников. Небольшое количество поступает из незрелых клеток селезёнки и костного мозга. При гемолизе это количество увеличивается. Остальной билирубин образуется в печени из гемсодержащих белков, например миоглобина, цитохромов, и из других неустановленных источников.
Неконъюгированный билирубин в плазме прочно связан с альбумином. Печенью выделяются многие органические анионы, в том числе жирные кислоты, жёлчные кислоты и другие компоненты желчи, не относящиеся к желчным кислотам, такие как билирубин (несмотря на его прочную связь с альбумином). Перенос билирубина через плазматическую мембрану внутрь гепатоцита осуществляется с помощью транспортных белков, например транспортного белка органических анионов, и/или по механизму «флипфлоп». Захват билирубина высокоэффективен благодаря его быстрому метаболизму в печени в реакции глюкуронидизации и выделению в желчь, а также вследствие наличия в цитозоле связывающих белков, таких как лигандины (глутатион-8-трансфераза).
Неконъюгированный билирубин представляет собой неполярное (жирорастворимое) вещество. В реакции конъюгации он превращается в полярное (водорастворимое вещество) и может благодаря этому выделяться в желчь. Эта реакция протекает с помощью микросомального фермента
ФУНКЦИОНАЛЬНАЯ БИОХИМИЯ
74
уридиндифосфатглюкуронилтрансферазы (УДФГТ), превращающего неконъюгированный билирубин в конъюгированный моно- и диглюкуронид билирубина. У человека в желчи билирубин представлен в основном диглюкуронидом. Превращение билирубина в моноглюкуронид, а также в диглюкуронид происходит в одной и той же микросомальной системе глюкуронилтрансферазы. При перегрузке билирубином, например при гемолизе, образуется преимущественно моноглюкуронид, а при уменьшении поступления билирубина или при индукции фермента возрастает содержание диглюкуронида.
Наиболее важное значение имеет конъюгация с глюкуроновой кислотой, однако небольшое количество билирубина конъюгируется с сульфатами, ксилозой и глюкозой; при холестазе эти процессы усиливаются
Экскреция билирубина в канальцы происходит с помощью семейства АТФ-зависимых мультиспецифичных транспортных белков для органических анионов. Скорость транспорта билирубина из плазмы в жёлчь определяется этапом экскреции глюкуронида билирубина.
Жёлчные кислоты переносятся в жёлчь с помощью другого транспортного белка. Диглюкуронид билирубина, находящийся в жёлчи, водорастворим (полярная молекула), поэтому в тонкой кишке не всасывается. В толстой кишке конъюгированный билирубин подвергается гидролизу β-глюкуронидазами бактерий с образованием уробилиногенов. Уробилиноген, имея неполярную молекулу, хорошо всасывается в тонкой кишке и в минимальном количестве – в толстой. Небольшое количество уробилиногена, которое в норме всасывается, вновь экскретируется печенью и почками (энтерогепатическая циркуляция). При нарушении функции гепатоцитов печёночная реэкскреция уробилиногена нарушается и увеличивается почечная экскреция. Уробилиноген из тонкой кишки поступает в толстую кишку, где восстанавливается кишечной микрофлорой до стеркобилиногена. В нижних отделах толстой кишки стеркобилиноген окисляется до стеркобилина и выводится с калом. Стеркобилин придаёт калу характерную коричневую окраску. Небольшое количество (около 5 %) стеркобилиногена всасывается в кровь и после выводится с мочой.
ФУНКЦИОНАЛЬНАЯ БИОХИМИЯ
75
ТЕМА № 4 ФУНКЦИОНАЛЬНАЯ БИОХИМИЯ ПОЧЕК
План:
1.Строение почки. Особенности обмена веществ в почечной ткани. Биохимические функции почек и их характеристика.
2.Образование мочи в различных отделах нефрона. Органические и неорганические компоненты мочи.
3.Регуляторно-гомеостатическая функция почек.
4.Обезвреживание чужеродных соединений в почках.
5.Образование гуморальных факторов в почках и их регуляторное значение.
1. Строение почки. Особенности обмена веществ в почечной ткани. Биохимические функции почек и их характеристика.
Почка – парный паренхиматозный орган бобовидной формы, располагается в поясничной области брюшной полости по обе стороны от позвоночного столба, имеет длину 10-12 см, ширину 5-6 см и толщину 4 см, массу – 120-200 г. Почки – экскреторные органы, вырабатывающие мочу. С мочой из организма выводятся продукты обмена и чужеродные вещества.
На разрезе почек видно, что ворота продолжаются в расширенную полость органа – почечную пазуху, в которой располагаются малые почечные чашки, большие почечные чашки и почечная лоханка. Кнаружи от пазухи располагается паренхима почки, которая состоит из мозгового и коркового вещества. Функциональной (и структурной) единицей почек является нефрон, в почке человека содержится примерно 1 млн нефронов.
Основной функцией почек является выведение из организма воды и водорастворимых веществ (конечных продуктов обмена веществ). С
экскреторной функцией тесно связана функция регуляции ионного и кислотно-основного равновесия внутренней среды организма. Обе функции контролируются гормонами. Кроме того, почки выполняют эндокринную функцию, принимая непосредственное участие в синтезе многих гормонов. Наконец, почки участвуют в процессах промежуточного метаболизма, особенно в глюконеогенезе и расщеплении пептидов и аминокислот.
Через почки проходит очень большой объем крови: 1500 л в сутки. Из этого объема отфильтровывается 180 л первичной мочи. Затем объем первичной мочи существенно снижается за счет реабсорбции воды, в итоге суточный выход мочи составляет 0,5-2,0 л.
Сложные физиологические процессы в почечной ткани протекают с постоянным потреблением большого количества энергии, выделяемой при метаболических реакциях. Не менее 8-10% всего поглощаемого человеком в покое кислорода используется на окислительные процессы в почках.
ФУНКЦИОНАЛЬНАЯ БИОХИМИЯ
76
Потребление энергии на единицу массы в почках больше, чем в любом другом органе.
В корковом веществе почки ярко выражен аэробный тип обмена веществ. В мозговом веществе преобладают анаэробные процессы. Почка относится к органам, наиболее богатым ферментами. Большинство этих ферментов встречается и в других органах. Так, ЛДГ, АсАТ, АлАт, глутаматдегидрогеназа широко представлены как в почках, так и в других тканях. Вместе с тем имеются ферменты, которые в значительной степени специфичны для почечной ткани. К таким ферментам прежде всего относится глицин-амидинотроансфераза (трансамидиназа). Данный фермент содержится в тканях почек и поджелудочной железы и практически отсутствует в других тканях.
Ткань почек относится к типу тканей с высокой активностью изофермен-тов ЛДГ1 и ЛДГ2. При изучении тканевых гомогенатов различных слоев почек обнаруживается четкая дифференциация изоферментных спектров ЛДГ. В корковом веществе преобладает активность ЛДГ1 и ЛДГ2, а в мозговом – ЛДГ5 и ЛДГ4. При острой почечной недостаточности в сыворотке крови повышается активность анодных изоферментов ЛДГ, т.е. изоферментов с высокой электрофоретической подвижностью (ЛДГ1 и ЛДГ2).
2.Образование мочи в различных отделах нефрона. Органические
инеорганические компоненты мочи.
Образование мочи идёт в несколько этапов. Этапы и строение нефрона суммированы на рисунке 4.1.
ФУНКЦИОНАЛЬНАЯ БИОХИМИЯ
77
Рисунок 4.1. – Строение нефрона и мочеобразование
Ультрафильтрация (гломерулярная или клубочковая фильтрация).
В клубочках почечных телец из плазмы крови в процессе ультрафильтрации образуется первичная моча, изоосмотическая с плазмой крови. Поры, через которые фильтруется плазма, имеют эффективный средний диаметр 2,9 нм. При таком размере пор все компоненты плазмы крови с молекулярной массой (М) до 5 кДа свободно проходят через мембрану. Вещества с M < 65 кДа частично проходят через поры, и только крупные молекулы (М > 65 кДа) удерживаются порами и не попадают в первичную мочу. Так как большинство белков плазмы крови имеют достаточно высокую молекулярную массу (М > 54 кДа) (см. с. 271) и заряжены отрицательно, они удерживаются гломерулярной базальной мембраной и содержание белков в ультрафильтрате незначительно.
Реабсорбция. Первичная моча концентрируется (примерно в 100 раз по сравнению с исходным объемом) за счет обратной фильтрации воды. Одновременно по механизму активного транспорта в канальцах реабсорбируются практически все низкомолекулярные вещества, особенно глюкоза, аминокислоты, а также большинство электролитов (неорганических и органических ионов). Реабсорбция аминокислот осуществляется с помощью группоспецифичных транпортных систем (переносчиков), с дефектом которых связан ряд генетически обусловленных наследственных заболеваний (цистиноз, глицинурия, синдром Хартнупа).
ФУНКЦИОНАЛЬНАЯ БИОХИМИЯ
78
Секреция. Большинство веществ, подлежащих выведению из организма, поступают в мочу за счет активного транспорта в почечных канальцах. К таким веществам относятся ионы H+ и К+, мочевая кислота и креатинин, лекарственные вещества, например пенициллин.
Процессы концентрирования и селективного транспорта требуют больших затрат энергии. Необходимый АТФ синтезируется за счет окисления жирных кислот, кетоновых тел и некоторых аминокислот и в меньшей степени лактата, глицерина, цитрата и глюкозы, которые содержатся в крови. В почках так же, как и в печени, может идти процесс глюконеогенеза. Субстратами служат углеродные скелеты глюкогенных аминокислот, азот которых в форме аммиака используется для регуляции рН мочи. В почках обнаружены ферменты расщепления пептидов и метаболизма аминокислот, обладающие высокой активностью (например, оксидазы аминокислот, аминооксидазы, глутаминаза).
С мочой из организма выводится вода и водорастворимые вещества. Количество и состав мочи подвержены сильным колебаниям и зависят от особенностей питания, массы, возраста, пола, образа жизни (активности), состояния здоровья, а также от параметров окружающей среды, таких, как температура и влажность воздуха. Поскольку мочеиспускание подчинено определенному суточному ритму, количество и состав мочи определяют по суточному показателю (24 ч).
В организме взрослого человека в сутки образуется примерно 0,5-2,0 л мочи, которая на 95% состоит из воды. Обычно моча имеет слабокислое значение рН (примерно 5,8), однако величина рН зависит от обмена веществ. При потреблении большого количества растительной пищи рН может подняться до 7.
Органические компоненты мочи. Основную часть органической фракции мочи составляют азотсодержащие вещества, конечные продукты азотистого обмена. Мочевина, образующаяся в печени, является переносчиком азота, содержащегося в аминокислотах и пиримидиновых основаниях. Количество мочевины непосредственно связано с метаболизмом белка: 70 г белка приводит к образованию ~30 г мочевины. Мочевая кислота служит конечным продуктом обмена пуринов. Креатинин, который образуется за счет спонтанной циклизации креатина, является конечным продуктом обмена веществ в мышечной ткани. Поскольку суточное выделение креатинина является индивидуальной характеристикой (оно прямо пропорционально мышечной массе), креатинин может использоваться как эндогенное вещество для определения скорости гломерулярной фильтрации. Содержание в моче аминокислот зависит от характера питания и эффективности работы печени. В моче присутствуют также производные аминокислот (например, гиппуровая кислота). Содержание в моче производных аминокислот, входящих в состав специальных белков, например гидроксипролина, присутствующего в коллагене, или 3-
ФУНКЦИОНАЛЬНАЯ БИОХИМИЯ
79
метилгистидина, входящего в состав актина и миозина, может служить показателем интенсивности расщепления этих белков.
Составными компонентами мочи являются образующиеся в печени конъюгаты с серной и глюкуроновой кислотами, глицином и другими полярными веществами. В моче могут присутствовать продукты метаболической трансформации многих гормонов (катехоламинов, стероидов, серотонина). По содержанию конечных продуктов можно судить о биосинтезе этих гормонов в организме. Белковый гормон хориогонадотропин (ХГ, M 36 кДа), образующийся в период беременности, попадает в кровь и обнаруживается в моче иммунологическими методами. Присутствие гормона служит показателем беременности.
Желтую окраску моче придают урохромы – производные желчных пигментов, образующихся при деградации гемоглобина. Моча темнеет при хранении за счет окисления урохромов.
Неорганические компоненты мочи. В моче присутствуют катионы Na+, K+, Ca2+, Mg2+ и NH4+, анионы Cl–, SO42– и НРО42– и в следовых количествах
другие ионы. Содержание кальция и магния в фекалиях существенно выше, чем в моче. Количество неорганических веществ в значительной степени зависит от характера питании. При ацидозе может сильно повыситься экскреция аммиака. Выведение многих ионов регулируется гормонами.
Изменения концентрации физиологических компонентов и появление патологических составляющих мочи используются для диагностики заболеваний. Например, при диабете в моче присутствуют глюкоза и кетоновые тела.
3. Регуляторно-гомеостатическая функция почек.
Почки и легкие играют основную роль в поддержании рН (гомеостаза) межклеточной жидкости в организме, причем почки вносят вклад в регуляцию кислотно-основного равновесия, осуществляя активную экскрецию протонов (рис. 4.2).
Клетки дистального отдела нефрона (извитого канальца и собирательных почечных трубочек) переносят протоны (H+) из крови в просвет канальца (в мочу). Секреция идет против градиента концентрации, поскольку концентрация протонов в моче в 1000 раз превышает концентрацию в крови. При этом из крови в клетки почечных трубочек диффундирует диоксид углерода (СО2), который в цитоплазме гидратируется при участии карбонат-дегидратазы (карбоангидразы) с образованием Н2СО3, диссоциирующей на ион бикарбоната (НСО3–) и протон. Протон секретируется из цитоплазмы в просвет канальца мембранной транспортной АТФ-зависимой системой, а ион бикарбоната всасывается через базолатеральную мембрану обратно в кровь. Для сохранения электронейтральности из канальца в кровь за счет реабсорбции переносятся ионы Na+. Суммарный процесс состоит в переносе протонов из крови в обмен
ФУНКЦИОНАЛЬНАЯ БИОХИМИЯ
80
на ионы Na+. Тем самым почки принимают участие в поддержании стабильного рН плазмы крови (равновесия СО2/НСО3–).
Рисунок 4.2. – Поддержание кислотно-основного равновесия с помощью почек
Ежедневно с мочой секретируется примерно 60 мМ протонов. Однако в моче большая часть протонов нейтрализуется буферными системами, поэтому рН мочи лежит в слабокислой области (примерно до 4,8) Наиболее важной буферной системой является фосфатная (НРО42–/Н2РО4–). Определенный вклад в поддержание величины рН вносит аммиак за счет образования ионов аммония. В то время как экскреция фосфата зависит от количества фосфора, поступившего с пищей, выведение аммиака варьирует в широких пределах в зависимости от метаболических потребностей организма.
Электролитные равновесия и осмотическое давление в основном определяются показателями реабсорбции электролитов и воды в почках. Рассмотрим эти процессы подробнее. Описываемые процессы суммированы на рисунке 4.3.
ФУНКЦИОНАЛЬНАЯ БИОХИМИЯ
