
- •3. Основные расчетные параметры. Температура, давление, допускаемое напряжение.
- •4. Основные требования, предъявляемые к конструкциям сварных аппаратов (привести нормативные документы). Испытания аппаратов на прочность и герметичность.
- •5. Пластины оболочки. Основные понятия и определения. Напряженное состояние оболочек вращения под воздействием внутреннего давления.
- •10. Механические колебания валов. Критическая скорость вала с одним грузом (анализ формулы динамического прогиба). Условие виброустойчивости. Явление самоцентрирования.
- •11.Особенности расчета валов с несколькими массами. Понятие о точном методе расчета критических скоростей. Приближенные методы.
- •12. Колебания валов. Гироскопический эффект. Влияние различных факторов на критическую скорость
- •15. Расчет колонных аппаратов на действие ветровых нагрузок. Расчетная схема, расчетные состояния. Определение осевой нагрузки.
- •16. Определение ветровой нагрузки и изгибающего момента. Проверка прочности корпуса колонного аппарата.
- •17. Расчет колонных аппаратов на действие ветровых нагрузок. Типы и конструкция опор для вертикальных аппаратов. Выбор типа опоры.
- •18. Расчет колонных аппаратов на действие ветровых нагрузок. Проверка прочности и устойчивости опорной обечайки и ее узлов.
- •19. Теплообменные аппараты. Определение температурных усилий и напряжений в корпусе и трубках та типа тн (Привести расчетную схему, формулы без вывода.Анализ формул).
- •20. Теплообменные аппараты. Определение температурных усилий и напряжений в корпусе и трубках та типа тк (Привести расчетную схему, формулы без вывода.Анализ формул).
- •21)Назначение и роль машин и аппаратов. Основные тенденции в развитии аппаратурного оформления процессов нефтегазопереработки
- •24. Роль и место колонных аппаратоввтехнологическом процессе. Содержание паспорта на аппарат.
- •25. Внутренние устройства колонных аппаратов. Типы тарелок, их классификация и требования к ним. Конструктивное исполнение крепления внутренних устройств. Отбойные устройства.
- •26. Насадочные контактные устройства. Типы и классификация насадок. Принципы выбора насадок.
- •27. Вакуумные колонны. Особенности конструкции и эксплуатации. Вакуумсоздающие системы, конструкции.
- •28. Трубчатые печи. Назначение, их место и роль в технологической системе и область применения. Классификация трубчатых печей и их типы.
- •30. Трубчатый змеевик, его конструктивное исполнение, способы крепления. Выбор размера и материалов труб и отводов, предъявляемые технические требования.
- •31. Горелочные устройства, применяемые в трубчатых печах. Классификация, устройство и принцип действия.
- •32. Способы создания тяги в печах. Способы утилизации тепла уходящих газов.
- •33. Теплообменные аппараты. Общие сведения о процессе теплообмена. Требования предъявляемые к аппаратам. Классификация теплообменной аппаратуры.
- •34. Кожухотрубчатые теплообменники. Теплообменники жесткого типа. Преимущества и недостатки. Способы крепления трубной решетки к корпусу. Теплообменники с компенсатором.
- •35. Теплообменники нежесткой конструкции. Конструкция теплообменника с u-образными трубками.
- •36. Теплообменники с плавающей головкой. Особенности устройства и конструкции плавающих головок. Теплообменник типа «труба в трубе».
- •37. Аппараты воздушного охлаждения. Классификация и область применения. Конструктивное исполнение аво.
- •38. Классификация технологических трубопроводов. Категории трубопроводов. Назначение и применение.
- •39. Температурные деформации трубопроводов и способы их компенсации.
- •40. Трубопроводная арматура. Классификация. Особенности конструктивного и материального исполнения.
- •41. Основы массопередачи. Классификация процессов массообмена. Массообмен, массоотдача, массопередача. Диффузионный и конвективный механизмы массообмена. Равновесие и движущая сила массопередачи.
- •42. Уравнение массоотдачи, коэффициент массоотдачи. Уравнение массопередачи, коэффициент массопередачи. Материальный баланс массопередачи. Уравнение рабочей линии.
- •43 Средняя движущая сила массопередачи. Расчет средней движущей силы массопередачи. Число единиц переноса. Высота единицы переноса. Дифференциальное уравнение конвективной диффузии.
- •45 Расчет высоты массообменных аппаратов. Число теоретических ступеней изменения концентрации и высота эквивалентная теоретической ступени. Графический метод расчета числа теоретических тарелок.
- •48. Дистилляционные процессы. Физико-химические основы. Закон Рауля. Уравнение равновесной линии, относительная летучесть. Изображение процессов дистилляции на у-х и t-X-y диаграммах.
- •49 Простая перегонка, материальный баланс простой перегонки. Схемы фракционной и ступенчатой перегонки, перегонки с частичной дефлегмацией.
- •51. Насадочные и тарельчатые колонные аппараты, виды насадок и тарелок. Полые распылительные колонны, применяемые для абсорбции и экстракции. Пленочные абсорберы.
- •54 Назначение и основные принципы процесса Кристаллизации. Технические способы процесса Кристаллизации в промышленности. Какие типы аппаратов используются для осуществления процесса Кристаллизации.
- •56. Общие сведения о процессе отстаивания. Конструкция отстойников. Определение поверхности осаждения.
- •57. Разделение неоднородных систем в поле центробежных сил. Описание процесса центрифугирования. Устройство центрифуг. Разделение в циклоне.
- •58. Очистка сточных вод методом флотации. Виды и способы флотации. Конструкции флотационных установок.
- •59. Физические основы и способы очистки газов. Виды аппаратов газоочистки.
- •1. Гравитационная очистка газов.
- •2. Под действием сил инерции и центробежных сил.
- •4. Мокрая очистка газов
- •60. Понятие пограничного слоя. Ламинарный пограничный слой. Турбулентный пограничный слой. Профиль скорости и трение в трубах.
- •61. Общие требования к средствам дефектоскопического контроля
- •63. Классификация методов неразрушающего контроля.
- •64. Классификация оптических приборов для визуально-оптического контроля.
- •65 Сущность и классификация методов капиллярной дефектоскопии.
- •66. Область применения и классификация магнитных методов контроля.
- •67. Феррозондовый метод контроля
- •68. Область применения и классификация акустических методов контроля.
- •69. Область применения и классификация радиационных методов контроля.
- •70. Область применения и классификация вихретоковых методов контроля
66. Область применения и классификация магнитных методов контроля.
Магнитопорошковый контроль нашел очень широкое применение на железнодорожном транспорте, в авиации, судостроении, химическом машиностроении, автомобилестроении, нефтедобывающей и газодобывающей отраслях (контроль трубопроводов). Магнитно порошковый контроль имеет очень высокую производительность, чувствительность, также удобную наглядность результатов контроля. При грамотном использовании данного метода могут быть обнаружены дефекты в даже начальной стадии их появления
Магнитопорошковая дефектоскопия (МПД)предназначена для выявления тонких поверхностных и подповерхностных нарушений сплошности металла - дефектов, распространяющихся вглубь изделий. Такими дефектами могут быть трещины, волосовины, надрывы, флокены, непровары, поры.
Магнитопорошковый контроль является одним из основных методов неразрушающего контроля и необходим для проверки ферромагнитных металлических конструкций.
Магнитные методы неразрушающего контроля
Различают следующие методы магнитного контроля:
Феррозондовый метод (феррозондовые дефектоскопы)
Магнитографический метод
Вихретоковый метод (вихретоковый контроль, вихретоковые дефектоскопы, толщиномеры, структуроскопы, ферритометры)
Феррозондовый метод контроляприменяется для выявления поверхностных и под поверхностных (глубиной до 10 мм) дефектов типа нарушения сплошности материала: волосовины, трещин, раковин, закатов, плен и т.п., а также для выявления дефектов типа нарушения сплошности сварных соединений и для контроля качества структуры и геометрических размеров изделий. Феррозондовый контроль используется для определения степени размагниченности изделий после магнитного контроля.
Феррозондовый метод можно применять на изделиях любых размеров и форм, если отношение их длины к наибольшему размеру в поперечном направлении и их магнитные свойства дают возможность намагничивания до степени, достаточной для создания магнитного поля рассеяния дефекта, обнаруживаемого с помощью преобразователя.
Магнитографическим методом контролявыявляют дефекты типа нарушения сплошности материала изделий, в основном для контроля сварных стыковых соединений из ферромагнитных материалов при их толщине от 1 до 18 мм.
Вихретоковый метод неразрушающего контроляоснован на анализе взаимодействия внешнего электромагнитного поля с электромагнитным полем вихревых токов, наводимых в объект контроля этим полем. Вихретоковый контроль применяют для контроля деталей, изготовленных из электропроводящих материалов.
Магнитный неразрушающий контроль осуществляют с помощью средств неразрушающего контроля:измерительных приборов (дефектоскопов, толщиномеров, структуроскопов, магнитометров, ферритометров, коэрцитиметров и т.д.) и установок, а также дефектоскопических веществ и материалов (проникающих и проявляющих жидкостей, магнитных порошков и суспензий, паст и т.д.), стандартных образцов, вспомогательного оборудования.
Дефектоскопы представляют собой приборы и установки, предназначенные для обнаружения дефектов типа нарушения сплошности.
Практически все дефектоскопы не только выявляют дефекты в изделии, но и определяют с установленной погрешностью его размеры и местонахождение. Некоторые дефектоскопы способны обнаруживать дефекты, определять глубину их и координаты относительно плоскостей изделия.
Магнитопорошковый метод
Магнитопорошковый метод предназначен для выявления поверхностных и под поверхностных (на глубине до 1,5-2 мм) дефектов типа нарушения сплошности материала изделия: трещины, волосовины, расслоения, не проварка стыковых сварных соединений, закатов и т.д.
Магнитные частицы порошка, попадая в поле дефекта под действием электрического тока, намагничиваются и в результате притягивающей сипы перемещаются в зону наибольшей неоднородности магнитного поля. Частицы притягиваются друг к другу, выстраиваются в цепочки, ориентируясь по магнитным силовым линиям поля, и, накапливаясь, образуют характерные рисунки в виде валиков, по которым судят о наличии дефекта.
Магнитопорошковым методом можно контролировать изделия любых габаритных размеров и форм, если магнитные свойства материала изделия (относительная максимальная магнитная проницаемость не менее 40) позволяют намагничивать его до степени, достаточной для создания поля рассеяния дефекта, способного притянуть частицы ферромагнитного порошка.
Принцип действия магнитопорошкового метода контроля
Магнитопорошковый метод- это метод неразрушающего контроля поверхностей изделий из ферромагнитных материалов в их производстве и эксплуатации.
Суть магнитопорошкового контроля:
Магнитный поток в бездефектной части изделия не меняет своего направления. Если же на пути магнитного потока встречаются участки с пониженной магнитной проницаемостью, например, дефекты в виде разрыва сплошности металла (трещины, неметаллические включения и т.д.), то часть силовых линий магнитного поля выходит из детали наружу и входит в нее обратно, при этом возникают местные магнитные полюсы (N и S) и, как следствие, магнитное поле над дефектом. Т.к. магнитное поле над дефектом неоднородно, то на магнитные частицы, попавшие в это поле, действует сила, стремящаяся затянуть частицы в место наибольшей концентрации магнитных силовых линий, то есть к дефекту. Частицы в области поля дефекта намагничиваются и притягиваются друг к другу как магнитные диполи под действием силы так, что образуют цепочные структуры, ориентированные по магнитным силовым линиям поля.
Наибольшая вероятность выявления дефектов достигается в случае, когда плоскость дефекта составляет угол 90 град. с направлением намагничивающего поля (магнитного потока). С уменьшением этого угла чувствительность снижается и при углах, существенно меньших 90 град. дефекты могут быть не обнаружены.
Чувствительность магнитопорошковой дефектоскопии МПД определяется:
магнитными характеристиками материала контролируемого изделия (магнитной индукцией (В)),
остаточной намагниченностью (Br),
максимальной магнитной проницаемостью (µmax),
коэрцитивной силой (Н0),
шероховатостью поверхности контроля,
напряженностью намагничивающего поля, его ориентацией по отношению к плоскости дефекта,
качеством дефектоскопических средств и освещенностью контролируемой поверхности.
Магнитопорошковый метод применяется практически во всех отраслях промышленности:
авиапромышленность
машиностроение
автомобильная промышленность
металлургия
транспорт (авиация, железнодорожный, автотранспорт)
судостроение
строительство (стальные конструкции, трубопроводы)
Методика применения магнитопорошкового контроля
Магнитопорошковый методприменяется для выявления в объектах разных размеров и формы, изготовленных из ферромагнитных материалов поверхностных и подповерхностных дефектов. С помощью магнитопорошкового метода могут быть обнаружены различные трещины, волосовины и закаты, непровары сварных соединений и другие дефекты шириной раскрытия несколько микрометров. Метод может быть использован для контроля объектов с немагнитным покрытием.
Существуют различные виды магнитопорошкового контроля:
«Сухой» и «мокрый» способы нанесения индикатора на контролируемый объект
Флуоресцентный или цветной индикатор для контроля при ультрафиолетовом УФ или дневном свете