
- •1. Кровь как внутренняя среда организма. Гомеостаз, механизмы его поддержания, жесткие и мягкие константы гомеостаза.
- •2. Основные функции крови.
- •3. Общее количество и распределение крови в животном организме. Методы определения количества крови у с.-х. Животных
- •4. Получение плазмы и сыворотки крови. Гематокрит. Химический состав плазмы.
- •5. Буферные системы крови – гемоглобиновая, карбонатная, фосфатная, белковоплазменная. Щелочной резерв крови
- •6. Строение и функции эритроцитов. Количество эритроцитов в крови с.-х. Животных. Методы определения количества эритроцитов.
- •7. Реакция оседания эритроцитов (роэ). Ее механизм и значение.
- •8. Гемоглобин, его структура и свойства. Количество гемоглобина у животных разных видов, пола и возраста. Методы определения количества гемоглобина в крови.
- •2. Количество гемоглобина (Нв) у животных разных видов.
- •9. Гемолиз, причины его вызывающие. Осмотическая устойчивость эритроцитов.
- •10. Миоглобин, его структура, роль и количество у разных видов животных.
- •15. Факторы, способствующие и препятствующие свертыванию крови в организме. Скорость свертывания крови у разных видов животных.
- •16. Современные представления об иммунных свойствах крови. Виды иммунитета. Тканевый и клеточный иммунитет.
- •17. Специфический и неспецифический иммунитет. Роль лимфоцитов в образовании антител. Механизм иммунного ответа.
- •18. Антитела и антигены. Механизмы элиминации антигенов.
- •19. Группы крови. Факторы, обусловливающие их наличие.
- •20. Особенности факторов групп крови у с.-х. Животных. Их определение и использование в животноводческой практике. Физиолого-биохимические основы иммуногенетики.
- •21. Роль крови в переносе газов. Механизм транспорта кислорода и углекислого газа. Роль фермента карбоангидразы в транспорте углекислого газа.
- •22. Особенности морфологии и химического состава крови птиц.
- •23. Особенности состава и функции крови рыб.
- •24. Гемопоэз. Образование плазмы и форменных элементов. Длительность жизни клеток крови. Регуляция гемопоэза.
5. Буферные системы крови – гемоглобиновая, карбонатная, фосфатная, белковоплазменная. Щелочной резерв крови
Буферные системы нейтрализуют значительную часть поступающих в кровь кислот и щелочей, тем самым препятствуя изменению рН крови.
В крови выделяют 4 вида буферных систем:
1) Гемоглобиновая буферная система. Она находится в эритроцитах. Эта система на 75% обеспечивает буферную емкость крови. Восстановленный гемоглобин является очень слабой кислотой, у оксигемоглобина кислотные свойства выражены сильнее. Механизм работы заключается в следующем. В тканевых капиллярах оксигемоглобин отдает кислород и появляется большое количество солей гемоглобина, имеющих щелочную реакцию. Они взаимодействуют с кислыми продуктами обмена веществ, в результате чего образуются бикарбонаты и восстановленный гемоглобин. В легочных капиллярах гемоглобин присоединяет кислород и становится сильной кислотой, предотвращая защелачивание крови после выделения углекислого газа из крови. Таким образом, гемоглобин действует в тканях как основание, а в легких как кислота.
2) Бикарбонатная буферная система. Она находится в плазме крови. Карбонатная буферная система по своей мощности занимает второе место. Она представлена угольной кислотой и ее солями: бикарбонатами натрия или калия (пропорция 1/20). В зависимости от сдвига рН она может проявлять кислотные или основные свойства. Механизм действия буферной системы следующий. При поступлении в кровь кислоты более сильной, чем угольная, она взаимодействует с бикарбонатами и вытесняет из них слабую кислоту. Образуются нейтральная соль и слабодиссоциированная угольная кислота. Угольная кислота распадается на воду и углекислый газ, который выделяется из организма через легкие. Если в кровь поступает основание, то в реакцию вступает угольная кислота. В результате образуются бикарбонаты и вода. Избыток бикарбонатов удаляется через почки. Бикарбонатный буфер широко используют для коррекции нарушений кислотно-основного состояния организма.
3) Фосфатная буферная система. Она состоит из натрия дигидрофосфата и натрия гидрофосфата. Первое соединение обладает свойствами слабой кислоты и взаимодействует с поступившими в кровь щелочными продуктами. Второе соединение имеет свойства слабой щелочи и вступает в реакцию с кислотами.
4) Белковая буферная система. Она является буфером, потому что белки обладают амфотерными свойствами: в кислой среде белки плазмы ведут себя как основания, а в щелочной среде – как кислоты.
Щелочной резерв - это основные соли слабых кислот, содержащихся в крови. Ёмкость щелочного резерва измеряют количеством СО2 (мл), которое может быть связано 100 мл крови, при напряжении СО2 в плазме 40 мм рт.ст.
Щелочной резерв у лошадей составляет 55-57 см
у крупного рогатого скота - в среднем 60,
овец - 56 см углекислого газа 100 мл плазмы крови.
Несмотря на наличие буферных систем и хорошую защищенность организма от сдвига реакции крови изменение кислотно-щелочного равновесия все же возможно. Например при напряженной мышечной работе щелочной резерв крови резко уменьшается - до 20 об % (объемных процентов) Неправильное Одностороннее кормление КРС кислым силосом или концентратами приводит к сильному снижению щелочного резерва (до 10 об %).
Если поступающие в кровь кислоты вызывают лишь уменьшение щелочного резерва но не сдвигают реакцию крови в кислую сторону, то наступает так называемый компенсированный ацидоз. Если не только исчерпывает щелочной резерв, но и сдвигается реакция крови в кислую сторону, возникает состояние некомпенсированного ацидоза.
Различают также компенсированный и некомпенсированный алкалозы. В первом случае происходит увеличение щелочного резерва крови и уменьшение кислотного без сдвига реакции крови. Во втором случае наблюдают и сдвиг реакции крови в щелочную сторону. Это может быть вызвано скармливанием или введением в организм большого количества щелочных продуктов, а также выведением кислот или повышенной задержкой щелочных веществ. Состояние компенсированного алкалоза возникает при гипервентиляции легких и усиленном выведении углекислого газа из организма.
Как ацидоз, так и алкалоз может быть метаболическим (негазовым) и респираторным (дыхательным, газовым). Метаболический ацидоз характеризуется снижением концентрации карбонатов в крови. Респираторный ацидоз, развивается в результате накопления углекислоты в организме. Метаболический алкалоз обусловлен увеличением количества бикарбонатов в крови, например при введении внутрь или парентерально веществ богатых гидроксилами. Газовый алкалоз связан с гипервентиляцией лёгких, при этом углекислый газ усиленно удаляется из организма.